IF voltage remains constant, then current is
inversely proportional to resistance.
The correct response is "b).", signifying "false" as the choice.
Answer:
(a) 
(b) 
Given:
Time period of Pulsar, 
Equatorial radius, R = 15 Km = 15000 m
Spinning time, 
Solution:
(a) To calculate the value of the centripetal acceleration,
on the surface of the equator, the force acting is given by the centripetal force:

(1)
where

(2)
Now, from (1) and (2):



(b) To calculate the tangential acceleration of the object :
The tangential acceleration of the object will remain constant and is given by the equation of motion as:

where
u = 



The constant velocity that the spacecraft must travel is : 3.49 * 10⁸ m/s
<u>Given data :</u>
Distance of star from earth = 4.3 light years
Observers time = 3.7 years
<h3>Determine the constant velocity the spacecraft must travel </h3>
Observers time = 3.7 * 365 * 24 * 60 * 60
Distance of star from earth = 4.3 * 9.46 * 10¹⁵
The velocity the spacecraft must travel will be calculated using the equation
V = distance / time
= ( 4.3 * 9.46 * 10¹⁵ ) / ( 3.7 * 365 * 24 * 60 * 60 )
= 3.49 * 10⁸ m/s
Hence we can conclude that The constant velocity that the spacecraft must travel is : 3.49 * 10⁸ m/s
Learn more about space travelling : brainly.com/question/1344685
<em />
<em>Attached below is the missing detail related to the question </em>
Answer:
Truck's speed = 5.21 m/s
Car's speed = 20.2 m/s
Explanation:
Given:
Mass of truck = M = 1650 kg
Speed of the truck initially = U = 15 m/s
Mass of the car = m = 779 kg
Initial speed of the car =u = 0
From the momentum conservation, Total initial momentum = Total final momentum.
M V+m U = M V +m v
⇒ (1650)(15) + 779×0 = (1650)V + 779 v
⇒ 24750 = 1650 V+779 v →(1)
Since the collision is elastic, relative velocity of approach = relative velocity of separation. 15 = v - V
⇒ v =V + 15; This is now substituted in the equation(1) above.
24750 = 1650 V + (799) (V+15)
⇒ 24750 = 1650 V + 799 V + 11985
⇒ 2449 V = 12765
⇒ Final velocity of the truck =
= 5.21 m/s
Final velocity of the car = v = V+15 = 5.21 + 15 = 20.2 m/s