Answer:
Search up Cell Divison Reinforcement key and it pops up
Explanation:
Literally took 30 seconds to find online or individually ask every question.
It is the first option bc if it absorbed heat it it will pressurize and could explode.
To determine the pH of a solution which has 0.195 M hc2h3o2 and 0.125 M kc2h3o2, we use the ICE table and the acid dissociation constant of hc2h3o2 <span>to determine the concentration of the hydrogen ion present at equilibrium. We do as follows:
HC2H3OO = H+ + </span>C2H3OO-
KC2H3OO = K+ + C2H3OO-
Therefore, the only source of hydrogen ion would be the acid. We use the ICE table,
HC2H3OO H+ C2H3OO-
I 0.195 0 0.125
C -x +x +x
------------------------------------------------------------------
E 0.195-x x 0.125 + x
Ka = <span>1.8*10^-5 = (0.125 + x) (x) / 0.195 -x
x = 2.81x10^-5 M = [H+]
pH = - log [H+]
pH = -log 2.81x10^-5
pH = 4.55
Therefore, the pH of the resulting solution would be 4.55.</span>
Subtractive colors mixing with all three primaries will result in black.
<h3>How are the 3 primary subtractive colors combined?</h3>
Adding all three subtractive primary color filters together will absorb all the colors of the white light spectrum as appeared below. Each filter (or pigment) absorbs its harmonizing color and transmits (diffusely reflects) the others.
Primary colors union of these three results in white. The subtractive primary colors are related to the subtraction of light: cyan, magenta, and yellow, the colors used in four-color printing, the union of these results in black.
So we can conclude that the usually used subtractive primary colors are cyan, magenta, and yellow, and if you overlap all three in a successful equal mixture.
Learn more about colors here: brainly.com/question/911645
#SPJ1
Answer:
(1) <em>C</em> C3H7OH = 9.200 M
(2) <em>C</em> C3H7OH = 11.647 m
Explanation:
mixture:
∴ 70% = (g C3H7OH/g mix)×100
∴ 30% = (gH2O/g mix)×100
∴ δ mix = 0.79 g/mL
assuming:
⇒ V mix = (100g)×(mL/0.79g) = 126.582 mL mix = 0.1266 L mix
⇒ g C3H7OH = 70g
⇒ g H2O = 30g
∴ Mw C3H7OH = 60.1 g/mol
∴ Mw H2O = 18 g/mol
(1) Molar concentration (M):
⇒ <em>C</em> C3H7OH = ((70 g)(mol/60.1 g))/(0.1266L) = 9.200 M
(2) molal concentration (m):
⇒ <em>C </em>C3H7OH = ((70 g)(mol/60.1g))/(0.100 Kg) = 11.647 m