Answer:
(a) 
(b) 
(c) 
Explanation:
Hello,
(a) In this case, since entropy remains unchanged, the constant
should be computed for air as an ideal gas by:


Next, we compute the final temperature:

Thus, the work is computed by:

(b) In this case, since
is given, we compute the final temperature as well:

And the isentropic work:

(c) Finally, for isothermal, final temperature is not required as it could be computed as:

Regards.
Answer:
a) Ka= 7.1 × 10⁻⁴; This is a weak acid because the acid is not completely dissociated in solution.
Explanation:
Step 1: Write the dissociation reaction for nitrous acid
HNO₂(aq) ⇄ H⁺(aq) and NO₂⁻(aq)
Step 2: Calculate the acid dissociation constant
Ka = [H⁺] × [NO₂⁻] / [HNO₂]
Ka = 0.022 × 0.022 / 0.68
Ka = 7.1 × 10⁻⁴
Step 3: Determine the strength of the acid
Since Ka is very small, nitrous acid is a weak acid, not completely dissociated in solution.
<span>• Benzene has the formula of C6H<span>6 </span>whereas cyclohexane has the formula of C6H<span>12.
</span></span>
Benzene is an aromatic compound but cyclohexane is not aromatic.
Benzene is an unsaturated molecule, but cyclohexane is saturated.
<span>
Carbon atoms in the benzene ring have sp2 hybridization where carbon atoms in the cyclohexane have sp3 hybridization.</span>
Benzene has a planar structure whereas cyclohexane has chair conformations.<span>
</span>
Answer:
the solubility increases
Explanation:
The solubility of any ionic compound is due to the ionization of the compound and then the strong ion-dipole interactions acting between the ions and the solvent.
Thus, solubility also depends on the extent of the ionization of the salt.
The more the salt ionizes, the more there is ion-dipole interaction between the ions the solvent and more is the solubility.