It is 62.54
Hope this helped.
Answer:
£152.
Step-by-step explanation:
We have been given that a bottle contains 255 coins. 1/3 of the coins are £1.00.
Let us find 1/3 of 255 to find the number of £1 coins.
![\£1\text{ coins}=\frac{1}{3}\times 255](https://tex.z-dn.net/?f=%5C%C2%A31%5Ctext%7B%20coins%7D%3D%5Cfrac%7B1%7D%7B3%7D%5Ctimes%20255)
This means we have £85.
We are also told that 110 of the coins are 50 p coins.
![\text{Value of 50 p coins}=\£0.50\times 110](https://tex.z-dn.net/?f=%5Ctext%7BValue%20of%2050%20p%20coins%7D%3D%5C%C2%A30.50%5Ctimes%20110)
![\text{Value of 50 p coins}=\£55](https://tex.z-dn.net/?f=%5Ctext%7BValue%20of%2050%20p%20coins%7D%3D%5C%C2%A355)
Let us figure out number of 20 p coins by subtracting the number of £1 coins and 50 p coins from 255.
![\text{Number of 20 p coins}=255-(85+110)](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%2020%20p%20coins%7D%3D255-%2885%2B110%29)
![\text{Number of 20 p coins}=255-(195)](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%2020%20p%20coins%7D%3D255-%28195%29)
![\text{Number of 20 p coins}=60](https://tex.z-dn.net/?f=%5Ctext%7BNumber%20of%2020%20p%20coins%7D%3D60)
![\text{Value of 20 p coins}=\£0.20\times 60](https://tex.z-dn.net/?f=%5Ctext%7BValue%20of%2020%20p%20coins%7D%3D%5C%C2%A30.20%5Ctimes%2060)
![\text{Value of 20 p coins}=\£12](https://tex.z-dn.net/?f=%5Ctext%7BValue%20of%2020%20p%20coins%7D%3D%5C%C2%A312)
Now let us find total value of the coins contained in the bottle by adding the values of £1 coins, 50 p coins and 20 p coins.
![\text{The total value of the coins}=\£85+\£55+\£12](https://tex.z-dn.net/?f=%5Ctext%7BThe%20total%20value%20of%20the%20coins%7D%3D%5C%C2%A385%2B%5C%C2%A355%2B%5C%C2%A312)
![\text{The total value of the coins}=\£152](https://tex.z-dn.net/?f=%5Ctext%7BThe%20total%20value%20of%20the%20coins%7D%3D%5C%C2%A3152)
Therefore, the total value of the coins contained in the bottle is £152.
Hello James!
Graph using the slope and y - intercept.
Slope:
![\frac{4}{5}](https://tex.z-dn.net/?f=%20%5Cfrac%7B4%7D%7B5%7D%20)
Y-intercept: -3
The graph looks like this ↓↓↓
2 becuae......................................................................................................you have 5/10
Y=-3x+4
Gradient, m= -3
Parallel lines have equal gradients;
So, equation II,
y=mx+c
y=-3x+c
Replacing for x and y using point (-4, 6)
6=-3(-4)+c
6=12+c
6-12=c
c=-6
y=-3x-6