The information given about the proof does that Daniel made an error on line 2.
<h3>How to illustrate the information?</h3>
Given:
1. AB = 3x +2; BC = 4x + 8; AC = 38
2. AB + BC = AC incorrect (not an angle angle addition postulate)
3. 3x+2 + 4x + 8 = 38 correct
4. 7x + 10 = 38 correct
5. 7x = 28 correct
6. x = 4
Daniel made an error on line 2.
Here is the complete question:
Daniel wrote the following two-column proof for the given information. Given: AB = 3x + 2; BC = 4x + 8; AC = 38 Prove: x = 4 Statements Reason 1. AB = 3x + 2; BC = 4x + 8; AC = 38 1. Given 2. AB + BC = AC 2. Angle Addition Postulate 3. 3x + 2 + 4x + 8 = 38 3. Substitution Property of Equality 4. 7x + 10 = 38 4. Combining Like Terms 5. 7x = 28 5. Subtraction Property of Equality 6. x = 4 6. Division Property of Equality On which line, did Daniel make his error? line 2 line 3 line 4 line 5
Learn more about proof on:
brainly.com/question/4134755
#SPJ1
Answer:
x - 1
Step-by-step explanation:
The graph touches the x-axis at x = 1, its factor would be (x - 1)
Part A
Answers:
Mean = 5.7
Standard Deviation = 0.046
-----------------------
The mean is given to us, which was 5.7, so there's no need to do any work there.
To get the standard deviation of the sample distribution, we divide the given standard deviation s = 0.26 by the square root of the sample size n = 32
So, we get s/sqrt(n) = 0.26/sqrt(32) = 0.0459619 which rounds to 0.046
================================================
Part B
The 95% confidence interval is roughly (3.73, 7.67)
The margin of error expression is z*s/sqrt(n)
The interpretation is that if we generated 100 confidence intervals, then roughly 95% of them will have the mean between 3.73 and 7.67
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*5.7/sqrt(32)
ME = 1.974949
The margin of error is roughly 1.974949
The lower and upper boundaries (L and U respectively) are:
L = xbar-ME
L = 5.7-1.974949
L = 3.725051
L = 3.73
and
U = xbar+ME
U = 5.7+1.974949
U = 7.674949
U = 7.67
================================================
Part C
Confidence interval is (5.99, 6.21)
Margin of Error expression is z*s/sqrt(n)
If we generate 100 intervals, then roughly 95 of them will have the mean between 5.99 and 6.21. We are 95% confident that the mean is between those values.
-----------------------
At 95% confidence, the critical value is z = 1.96 approximately
ME = margin of error
ME = z*s/sqrt(n)
ME = 1.96*0.34/sqrt(34)
ME = 0.114286657
The margin of error is roughly 0.114286657
L = lower limit
L = xbar-ME
L = 6.1-0.114286657
L = 5.985713343
L = 5.99
U = upper limit
U = xbar+ME
U = 6.1+0.114286657
U = 6.214286657
U = 6.21