Answer:
Explanation:
In this case we shall calculate rate of change of flux in the coli to calculate induced emf .
Flux through the coil = no of turns x area x magnetic field perpendicular to it
=34 x 2.25 x (3.95 )²x 10⁻⁴ Weber
= 1193.4 x 10⁻⁴Weber
Final flux through the coil after turn by 90°
= 1193.4 x 10⁻⁴ cos 90 ° =0
Change of flux
= 1193.4 x 10⁻⁴ weber.
Time taken = 0.335 s .
Average emf= Rate of change of flux
= change in flux / time
=1193.4 x 10⁻⁴ / .335
= 3562.4 x 10⁻⁴
356.24 x 10⁻³
=356.24 mV.
Current induced = emf induced / resistance
= 356.24/.780
= 456.71 mA.
Answer:
Part a)

Part b)

Part c)

Explanation:
Part a)
As we know that the diver will have zero velocity in vertical direction
so here we can say that



Part b)
as we know that


so we will have


Part c)
Distance covered by diver from the edge of the pool is given as



Was the first act to actually set emissions towards factory smoke and pollution
DNA Polymerase proofreads and corrects bases added during replication.
Answer:
5.8 m/s
Explanation:
Let v = velocity of bike relative to Betty = -12.0 m/s (since the bike is moving away from betty).
u = velocity of ball relative to bike = + 17.8 m/s
and V = velocity of ball relative to Betty.
So, by Galilean relativity,
V = v + u
V = -12.0 m/s + 17.8 m/s
V = 5.8 m/s
So, the velocity of the ball as measured by Betty is 5.8 m/s