You have shared the situation (problem), except for the directions: What are you supposed to do here? I can only make a educated guesses. See below:
Note that if <span>ax^2+bx+5=0 then it appears that c = 5 (a rational number).
Note that for simplicity's sake, we need to assume that the "two distinct zeros" are real numbers, not imaginary or complex numbers. If this is the case, then the discriminant, b^2 - 4(a)(c), must be positive. Since c = 5,
b^2 - 4(a)(5) > 0, or b^2 - 20a > 0.
Note that if the quadratic has two distinct zeros, which we'll call "d" and "e," then
(x-d) and (x-e) are factors of ax^2 + bx + 5 = 0, and that because of this fact,
- b plus sqrt( b^2 - 20a )
d = ------------------------------------
2a
and
</span> - b minus sqrt( b^2 - 20a )
e = ------------------------------------
2a
Some (or perhaps all) of these facts may help us find the values of "a" and "b." Before going into that, however, I'm asking you to share the rest of the problem statement. What, specificallyi, were you asked to do here?
Since beta is in the first quadrant, the final answer will be positive.
To find cos(beta) so we can use the half angle identity, we can substitute into the Pythagorean identity. Doing so gives us that
So, this means that
Answer:
it would be 34
Step-by-step explanation:
I suppose you thought the following:
A) f(x) = 100^(x-5) - 1
B) f(x) = 3^(x-4) - 2
C) f(x) = 7^(x-1) + 1
D) f(x) = 8^(x+1) - 3
In that case the correct answers are A), B) and D)
Good luck!!!
I think is A or b go try it am not 100% sure