Answer with explanation:
For, a Matrix A , having eigenvector 'v' has eigenvalue =2
The order of matrix is not given.
It has one eigenvalue it means it is of order , 1×1.
→A=[a]
Determinant [a-k I]=0, where k is eigenvalue of the given matrix.
It is given that,
k=2
For, k=2, the matrix [a-2 I] will become singular,that is
→ Determinant |a-2 I|=0
→I=[1]
→a=2
Let , v be the corresponding eigenvector of the given eigenvalue.
→[a-I] v=0
→[2-1] v=[0]
→[v]=[0]
→v=0
Now, corresponding eigenvector(v), when eigenvalue is 2 =0
We have to find solution of the system
→Ax=v
→[2] x=0
→[2 x] =[0]
→x=0, is one solution of the system.
Answer:
The desired equation is y = (-8/3)x + 26/3.
Step-by-step explanation:
Moving from (1,6) to (4, -2) involves an increase of 3 in x and a decrease of 8 in y. Thus, the slope of the line thru these two points is m = rise / run = -8/3.
Using the slope-intercept form of the eq'n of a straight line and inserting the data given (slope = m = -8/3, x = 4, y = -2), we get:
y = mx + b => -2 = (-8/3)(4) + b, or -2 = -32/3 + b
Multiply all terms by 3 to clear out the fraction:
-6 = -32 + 3b.
Then 26 = 3b, and b = 26/3.
The desired equation is y = (-8/3)x + 26/3.
Mean:
E[Y] = E[3X₁ + X₂]
E[Y] = 3 E[X₁] + E[X₂]
E[Y] = 3µ + µ
E[Y] = 4µ
Variance:
Var[Y] = Var[3X₁ + X₂]
Var[Y] = 3² Var[X₁] + 2 Covar[X₁, X₂] + 1² Var[X₂]
(the covariance is 0 since X₁ and X₂ are independent)
Var[Y] = 9 Var[X₁] + Var[X₂]
Var[Y] = 9σ² + σ²
Var[Y] = 10σ²
The answer is permutation. It is <span>the action of changing the arrangement, especially the linear order, of a set of items.
Thank you for posting your question here at brainly. I hope the answer will help you. Feel free to ask more questions.
</span>
Answer:
your answer should be 56.52 .
Step-by-step explanation:
this reason because is because radius is usually half of the diameter so just multiply 28.26 by 2