Answer:
64
Step-by-step explanation:
Evaluate x^4 + 3 x^3 - 6 x^2 - 12 x - 8 where x = 3:
x^4 + 3 x^3 - 6 x^2 - 12 x - 8 = 3^4 + 3×3^3 - 6×3^2 - 12×3 - 8
3^3 = 3×3^2:
3^4 + 3×3×3^2 - 6×3^2 - 12×3 - 8
3^2 = 9:
3^4 + 3×3×9 - 6×3^2 - 12×3 - 8
3×9 = 27:
3^4 + 3×27 - 6×3^2 - 12×3 - 8
3^2 = 9:
3^4 + 3×27 - 69 - 12×3 - 8
3^4 = (3^2)^2:
(3^2)^2 + 3×27 - 6×9 - 12×3 - 8
3^2 = 9:
9^2 + 3×27 - 6×9 - 12×3 - 8
9^2 = 81:
81 + 3×27 - 6×9 - 12×3 - 8
3×27 = 81:
81 + 81 - 6×9 - 12×3 - 8
-6×9 = -54:
81 + 81 + -54 - 12×3 - 8
-12×3 = -36:
81 + 81 - 54 + -36 - 8
81 + 81 - 54 - 36 - 8 = (81 + 81) - (54 + 36 + 8):
(81 + 81) - (54 + 36 + 8)
| 8 | 1
+ | 8 | 1
1 | 6 | 2:
162 - (54 + 36 + 8)
| 1 |
| 5 | 4
| 3 | 6
+ | | 8
| 9 | 8:
162 - 98
| | 15 |
| 0 | 5 | 12
| 1 | 6 | 2
- | | 9 | 8
| 0 | 6 | 4:
Answer: 64
C) 12V2
12^2 + 12^2 = c^2
144 + 144 = 288
V288 = 12V2
Answer:
D.
Step-by-step explanation:
you can use a graphing calculator to graph the equation and match it with the picture.
Answer:
d. 
Step-by-step explanation:
The given trigonometric equation is;

Recall that;



The cosine function is negative in the second and third quadrant.


Add ( ) around part of the equation making sure there is a number in foront of it.
ex.) f(x) = 4(3x+13) -21