+∞
∫ x · e ^(-x² ) dx = / The substitution: u = - x², x d x = - du / 2
-∞
+∞
= - 1/2 · ∫ e ^(u) du = - 1/2 · e ^(-x²) /
- ∞
e^(-∞) = 1 / e^(∞)
= -1/2 · [ 1/ e^(∞) - 1/ e^(∞) ] = -1/2 · ( 0 - 0 ) = 0
Estimated answer is 4000 and actual answer is 3901
Step-by-step explanation:
- Step 1: Estimate 47 × 83 by rounding off to the nearest 10.
⇒ 47 ≈ 50 and 83 ≈ 80
⇒ 50 × 80 = 4000
- Step 2: Do the actual calculation of 47 × 83
47
× 83
------------
141
+ 376
------------
3901
------------
Your answer will be 13. :-)
Answer:
its 3
Step-by-step explanation:
Answer:
bottom left
Step-by-step explanation: