1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
sergiy2304 [10]
3 years ago
7

The hamster, x, walked 12 feet. The guinea pig walked 1 4 more than that.

Mathematics
1 answer:
nordsb [41]3 years ago
4 0

Answer:

26

Step-by-step explanation:

x is 12 so 12+14 so its 26 Hope this helps :D

You might be interested in
Please answer this question, i request
Jet001 [13]

{\large{\textsf{\textbf{\underline{\underline{Given :}}}}}}

\star  \:  \tt \cot  \theta = \dfrac{7}{8}

{\large{\textsf{\textbf{\underline{\underline{To \: Evaluate :}}}}}}

\star \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

{\large{\textsf{\textbf{\underline{\underline{Solution :}}}}}}

Consider a \triangle ABC right angled at C and \sf \angle \: B = \theta

Then,

‣ Base [B] = BC

‣ Perpendicular [P] = AC

‣ Hypotenuse [H] = AB

\therefore \tt \cot  \theta   =  \dfrac{Base}{ Perpendicular}  =  \dfrac{BC}{AC} = \dfrac{7}{8}

Let,

Base = 7k and Perpendicular = 8k, where k is any positive integer

In \triangle ABC, H² = B² + P² by Pythagoras theorem

\longrightarrow \tt {AB}^{2}  =   {BC}^{2}  +   {AC}^{2}

\longrightarrow \tt {AB}^{2}  =   {(7k)}^{2}  +   {(8k)}^{2}

\longrightarrow \tt {AB}^{2}  =   49{k}^{2}  +   64{k}^{2}

\longrightarrow \tt {AB}^{2}  =   113{k}^{2}

\longrightarrow \tt AB  =   \sqrt{113  {k}^{2} }

\longrightarrow \tt AB = \red{  \sqrt{113}  \:  k}

Calculating Sin \sf \theta

\longrightarrow  \tt \sin \theta = \dfrac{Perpendicular}{Hypotenuse}

\longrightarrow  \tt \sin \theta = \dfrac{AC}{AB}

\longrightarrow  \tt \sin \theta = \dfrac{8 \cancel{k}}{ \sqrt{113} \: \cancel{ k } }

\longrightarrow  \tt \sin \theta =  \purple{  \dfrac{8}{ \sqrt{113} } }

Calculating Cos \sf \theta

\longrightarrow  \tt \cos \theta = \dfrac{Base}{Hypotenuse}

\longrightarrow  \tt \cos \theta =  \dfrac{BC}{ AB}

\longrightarrow  \tt \cos \theta =  \dfrac{7 \cancel{k}}{ \sqrt{113} \:  \cancel{k } }

\longrightarrow  \tt \cos \theta =  \purple{ \dfrac{7}{ \sqrt{113} } }

<u>Solving the given expression</u><u> </u><u>:</u><u>-</u><u> </u>

\longrightarrow \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }

Putting,

• Sin \sf \theta = \dfrac{8}{ \sqrt{113} }

• Cos \sf \theta = \dfrac{7}{ \sqrt{113} }

\longrightarrow \:  \tt \dfrac{ \bigg(1 +  \dfrac{8}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{8}{ \sqrt{133}} \bigg) }{\bigg(1 +  \dfrac{7}{ \sqrt{133}} \bigg) \bigg(1 - \dfrac{7}{ \sqrt{133}} \bigg)}

<u>Using</u><u> </u><u>(</u><u>a</u><u> </u><u>+</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>(</u><u>a</u><u> </u><u>-</u><u> </u><u>b</u><u> </u><u>)</u><u> </u><u>=</u><u> </u><u>a²</u><u> </u><u>-</u><u> </u><u>b²</u>

\longrightarrow \:  \tt  \dfrac{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{8}{ \sqrt{133} } \bigg)}^{2}   }{ { \bigg(1 \bigg)}^{2}  -  { \bigg(  \dfrac{7}{ \sqrt{133} } \bigg)}^{2}  }

\longrightarrow \:  \tt   \dfrac{1 -  \dfrac{64}{113} }{ 1 - \dfrac{49}{113} }

\longrightarrow \:  \tt   \dfrac{ \dfrac{113 - 64}{113} }{  \dfrac{113 - 49}{113} }

\longrightarrow \:  \tt { \dfrac  { \dfrac{49}{113} }{  \dfrac{64}{113} } }

\longrightarrow \:  \tt   { \dfrac{49}{113} }÷{  \dfrac{64}{113} }

\longrightarrow \:  \tt    \dfrac{49}{ \cancel{113}} \times     \dfrac{ \cancel{113}}{64}

\longrightarrow \:  \tt   \dfrac{49}{64}

\qquad  \:  \therefore  \:  \tt \dfrac{(1  +  \sin \theta)(1 - \sin \theta) }{(1 +  \cos \theta) (1  -  \cos \theta) }  =   \pink{\dfrac{49}{64} }

\begin{gathered} {\underline{\rule{300pt}{4pt}}} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{We \: know :}}}}}}

✧ Basic Formulas of Trigonometry is given by :-

\begin{gathered}\begin{gathered}\boxed { \begin{array}{c c} \\ \bigstar \:  \sf{ In \:a \:Right \:Angled \: Triangle :}  \\ \\ \sf {\star Sin \theta = \dfrac{Perpendicular}{Hypotenuse}} \\\\ \sf{ \star \cos \theta = \dfrac{ Base }{Hypotenuse}}\\\\ \sf{\star \tan \theta = \dfrac{Perpendicular}{Base}}\\\\ \sf{\star \cosec \theta = \dfrac{Hypotenuse}{Perpendicular}} \\\\ \sf{\star \sec \theta = \dfrac{Hypotenuse}{Base}}\\\\ \sf{\star \cot \theta = \dfrac{Base}{Perpendicular}} \end{array}}\\\end{gathered} \end{gathered}

{\large{\textsf{\textbf{\underline{\underline{Note :}}}}}}

✧ Figure in attachment

\begin{gathered} {\underline{\rule{200pt}{1pt}}} \end{gathered}

3 0
2 years ago
Mario has a business selling muffins. Let x be the price of a muffin. Then, the profit P for Mario’s business is given by p(x)=-
Rufina [12.5K]
To make a positive profit p(x)>0 we need to make:
-100 x^{2} +350x-150 \ \textgreater \  0

Now we solve this for x:
-2 x^{2} +7x-3 \ \textgreater \ 0

We have:
a = -2
b = 7
c = -3

We will use formula for quadratic equation:
x_{1} =  \frac{-b+ \sqrt{ b^{2}-4ac } }{2a}  \\  \\  x_{2} =  \frac{-b- \sqrt{ b^{2}-4ac } }{2a}  \\  \\  x_{1} =  \frac{-7+ \sqrt{ 49-24 } }{-4} = \frac{-7+5 }{-4} = \frac{-2 }{-4} = \frac{1}{2}  \\  \\  x_{2} =  \frac{-7- \sqrt{ 49-24 } }{-4}  = \frac{-7-5 }{-4} = \frac{-12 }{-4} = 3

We got two solutions. One is fraction other is whole number. We will not consider fraction because the amount of muffins sold must be whole number. So our solution is:
x>3
5 0
3 years ago
Read 2 more answers
What is the smallest positive integer x such that 52 divides 98701 + x.​
strojnjashka [21]

Answer: i think 46 im not sure tho

Step-by-step explanation:

5 0
3 years ago
How to you put y=(x-8)2+6 in number sense
SpyIntel [72]

Answer:

y = 2x-10

Step-by-step explanation:

just that is the way

8 0
3 years ago
Identify is this is percent increase or percent decrease, then calculate percentage
vlabodo [156]

<em>Last year the chess club had 30 members. This year the club has 24 members. </em>

Last year, the chess club had 30 members. This year, the club has 24 members. Since this year had less than last year ( 30 > 24), the percent will be decreasing.

To find the percent decrease, you have to use the following formula.

\frac{Difference}{Original} \times 100

Difference refers to the difference between the two numbers, 24 and 30. The difference between 24 and 30 is 6. Original refers to the original number, which is last year's amount of members in the chess group. Therefore, original = 30.

Substitute the numbers into the formula.

\frac{Difference}{Original} =\frac{6}{30} =0.2

To convert the decimal to a fraction, multiply the decimal by 100.

0.2 \times 100 = 20 \%

The answer is the number of chess members decreased by 20%.

____

Since I started off by identifying whether it was decreasing or increasing, I did the work a bit differently. When finding the difference, you would usually subtract 30 from 24, which results in -6. Above I used 6, but if you used -6, you would end up with a result of -20%, which means it decreased by 20%. They bot end up with the same result, but you don't always have to first identify whether it's decreasing or increasing.

____

3 0
3 years ago
Other questions:
  • Two math questions
    8·1 answer
  • The square root of 281961?
    11·2 answers
  • -(3/7)+the cost of renting a car is $45/wk plus $0.25/mi traveled during that week. an equation to represent the cost would be y
    7·1 answer
  • Multiply to get 3, add to get 8
    7·1 answer
  • Chetan makes a necklace for his sister. Twelve beads take up 5 inches of string. How many beas fit on 1 foot of string
    13·1 answer
  • Which of these formulas models this arithmetic sequence? 4, 15, 26, 37, 48, . . .
    12·2 answers
  • Factor the GCF: 12x2y + 6x2y3 – 9xy? (4 points)
    14·1 answer
  • Can someone please help me out!! (the photo is provided)
    15·2 answers
  • I need help I’ll give u brainlest
    8·2 answers
  • Which of these lines have a scale factor of 2?
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!