Answer:
Hyperpolarization
Explanation:
At the synapse, neurotransmitters bind to neurotransmitter receptors in the postsynaptic neuron’s plasma membrane. This results in the opening of the ions channels and the flow of specific ions to change the voltage across the membrane. An inhibitory neurotransmitter inhibits the firing of the action potential by making the inside of the membrane more negative. It is called hyperpolarization (inhibition).
It may occur when the neurotransmitter opens the Cl– or K+ channels to allow the movement of chloride ions into the cell while permitting the outward movement of potassium ions to make the inside of the cell more negative.
The answer is A, 'a mammal' because it goes with the copulative verb 'to be', i. e., 'is'.
Answer:
A. NADH and FADH2 both donate electrons at the same location.
Explanation:
In the respiratory chain, four large protein complexes inserted into the mitochondrial inner membrane transport NADH and FADH₂ electrons (formed in glycolysis and the Krebs cycle) to oxygen gas, reducing them to NAD⁺ and FAD, respectively.
These electrons have great affinity for oxygen gas and, when combined with it, reduce it to water molecules at the end of the reaction.
Oxygen gas effectively participates in cellular respiration at this stage, so its absence would imply interruption of the process.
NADH and FADH₂ electrons, when attracted to oxygen, travel a path through protein complexes, releasing energy in this process.
The energy released by the NADH and FADH₂ electrons in the respiratory chain in theory yields <u>34</u> <u>ATP</u>, however, under normal conditions an average of 26 ATP molecules is formed.
If we consider that these 26 molecules are added to the two ATP formed in glycolysis and two ATP formed in the Krebs cycle, it can be said that cellular respiration reaches a maximum yield of 30 ATP per glucose molecule, although theoretically this number was 38 ATP per glucose molecule.
First pic :
plants do not have cell membranes
(plants have BOTH cell membranes and cell walls)
second pic:
ATGC
(opposite strand of the DNA TACG)
third pic:
the second choice
(selectively permeable means only specific molecules could get in and go out)
fourth pic:
option 2
(cellular respiration takes sugar (or food) and makes it into ATP energy. this is what makes us have energy after we eat)
I really hope this helped :))