Since we want just the top 20% applicants and the data is normally distributed, we can use a z-score table to check the z-score that gives this percentage.
The z-score table usually shows the percentage for the values below a certain z-score, but since the whole distribution accounts to 100%, we can do the following.
We want a z* such that:

But, to use a value that is in a z-score table, we do the following:

So, we want a z-score that give a percentage of 80% for the value below it.
Using the z-score table or a z-score calculator, we can see that:
![\begin{gathered} P(zNow that we have the z-score cutoff, we can convert it to the score cutoff by using:[tex]z=\frac{x-\mu}{\sigma}\Longrightarrow x=z\sigma+\mu](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20P%28zNow%20that%20we%20have%20the%20z-score%20cutoff%2C%20we%20can%20convert%20it%20to%20the%20score%20cutoff%20by%20using%3A%5Btex%5Dz%3D%5Cfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5CLongrightarrow%20x%3Dz%5Csigma%2B%5Cmu)
Where z is the z-score we have, μ is the mean and σ is the standard deviation, so:

so, the cutoff score is approximately 72.
Answer:
c. Mary charges $12.00 per hour for labor to paint houses. What is x, the number of hours Mary worked if she charged $240.00 for labor?
Step-by-step explanation:
Answer:
Step-by-step explanation:
The tangent is the Opposite over the Adjacent sides. (SOHCAH<u>TOA</u>).
Opposite/Adjacent = 4/9 = 0.44444
The angle whose tangent is 0.44444 is 23.96 or 24 degrees (round to nearest tenth).
190 ÷ 4 = 47.5 47.5 × 6 = 285 he could bike 285 in 6 days
Answer:
It's very simple. In 4 decimal digits there are 10,000 (0000 to 9999) possible values. The odds of any one of them coming up randomly is one in 10,000. A specific "4 digit number" would have 1/9000 chance, since there are 9000 4 digit numbers (1000-9999).
Step-by-step explanation: