Answer:
h=189
Step-by-step explanation:
solve for H by simplifying both sides of the equation, then isolating the variable.
hope this helped
Answer:
B
Step-by-step explanation
a function has to be on a graph and pass the horizontal line test. if it does not pass it then it will not be a function
Answer:

Step-by-step explanation:
The perimeter of a polygon is equal to the sum of all the sides of the polygon. Quadrilateral PTOS consists of sides TP, SP, TO, and SO.
Since TO and SO are both radii of the circle, they must be equal. Thus, since TO is given as 10 cm, SO will also be 10 cm.
To find TP and SP, we can use the Pythagorean Theorem. Since they are tangents, they intersect the circle at a
, creating right triangles
and
.
The Pythagorean Theorem states that the following is true for any right triangle:
, where
is the hypotenuse, or the longest side, of the triangle
Thus, we have:

Since both TP and SP are tangents of the circle and extend to the same point P, they will be equal.
What we know:
Thus, the perimeter of the quadrilateral PTOS is equal to 
Answer:
Let X the random variable that represent the heights of a population, and for this case we know the distribution for X is given by:
Where
and
Since the distribution for X is normal then the we know that the distribution for the sample mean
is given by:
And the standard error is given by:

Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Solution to the problem
Let X the random variable that represent the heights of a population, and for this case we know the distribution for X is given by:
Where
and
Since the distribution for X is normal then the we know that the distribution for the sample mean
is given by:
And the standard error is given by:
