Answer:
In general, atomic radius decreases across a period and increases down a group. ... Down a group, the number of energy levels (n) increases, so there is a greater distance between the nucleus and the outermost orbital. This results in a larger atomic radius.
Answer:
373.1 mL of AgCN (aq) must be poured into your electrolysis vat to ensure you have sufficient Ag to plate all of the forks.
Explanation:
Mass of silver to be precipitated on ecah spoon = 0.500 g
Number of silver spoons = 250
Total mass of silver = 250 × 0.500 g = 125 g

Moles of AgCN = n = 
Volume of AgCN solution =V
Molarity of the AgCN = 2.50 M

(1 L = 1000 mL)
373.1 mL of AgCN (aq) must be poured into your electrolysis vat to ensure you have sufficient Ag to plate all of the forks.
The reaction will generally form more reactants than products.
Explanation:
To delineate the the nature of the bonds that would be formed between the two elements, let us first write the electronic configuration of the two species;
Be = 2, 2
F = 2, 7
Beryllium is a metal with two valence electrons whereas fluorine is a halogen with seven valence electrons.
When Be loses two electrons it becomes isoelectronic with He;
Be → Be²⁺ + 2e⁻
Also, when fluorine gains an electron, it becomes isoelectronic with Ne;
F + e⁻ → F⁻
This loss and gain of electrons between the two elements creates an electrostatic attraction them and they enter into an electrovalent bond.
Hence;
Be²⁺ + 2F⁻ → BeF₂