Answer:
V₂ = 5.97 L
Explanation:
Given data:
Initial temperature = 9°C (9+273 = 282 K)
Initial volume of gas = 6.17 L
Final volume of gas = ?
Final temperature = standard = 273 K
Solution:
Formula:
The Charles Law will be apply to solve the given problem.
According to this law, 'the volume of given amount of a gas is directly proportional to its temperature at constant number of moles and pressure'
Mathematical expression:
V₁/T₁ = V₂/T₂
V₁ = Initial volume
T₁ = Initial temperature
V₂ = Final volume
T₂ = Final temperature
Now we will put the values in formula.
V₁/T₁ = V₂/T₂
V₂ = V₁T₂/T₁
V₂ = 6.17 L × 273K / 282 k
V₂ = 1684.41 L.K / 282 K
V₂ = 5.97 L
CxHy + O2 --> x CO2 + y/2 H2O
Find the moles of CO2 : 18.9g / 44 g/mol = .430 mol CO2 = .430 mol of C in compound
Find the moles of H2O: 5.79g / 18 g/mol = .322 mol H2O = .166 mol of H in compound
Find the mass of C and H in the compound:
.430mol x 12 = 5.16 g C
.166mol x 1g = .166g H
When you add these up they indicate a mass of 5.33 g for the compound, not 5.80g as you stated in the problem.
Therefore it is likely that either the mass of the CO2 or the mass of H20 produced is incorrect (most likely a typo).
In any event, to find the formula, you would take the moles of C and H and convert to a whole number ratio (this is usually done by dividing both of them by the smaller value).