1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Veronika [31]
3 years ago
7

I really need help,please. also happy holidays!

Mathematics
1 answer:
IRINA_888 [86]3 years ago
7 0

Answer:

D

Step-by-step explanation:

You might be interested in
Please help !!! I’m stuck
Kruka [31]

Answer:

2/3 ≈ 0.6667

Step-by-step explanation:

apply soh cah toa

sine=opposite/hypo

sine=4/6

sine=2/3

4 0
3 years ago
In the straightedge and compass construction of the parallel line below, which of the following reasons can you use to prove tha
Eva8 [605]

Answer:

D.

Step-by-step explanation:

Lines EG and CD are cut by transversal CF.

By construction, ∠FEG=∠FCD. These two angles are corresponding angles.

Since two corresponding angles are congruent, then lines EG and CD are parallel (by  converse of the corresponding angles postulate).

Converse of the Corresponding Angles Postulate: If the corresponding angles formed by two lines and a transversal are congruent, then lines are parallel.

3 0
3 years ago
Sea un cuadrado de 2 pulgadas de lado uniendo los puntos medios se obtiene otro cuadrado inscrito en el anterior si repetimos es
Ne4ueva [31]

Answer:

1) La serie geométrica formada es

4, 2, 1,..., ∞

2) La suma al infinito de las áreas de los cuadrados es 8 in.²

Step-by-step explanation:

1) El área del primer cuadrado, a₁ = 2² = 4 pulgadas²

El área del siguiente cuadrado, a₂ = (√ (1² + 1²)) ² = (√2) ² = 2 pulg²

El área del siguiente cuadrado, a₃ = ((√ (2) / 2) ² + (√ (2) / 2) ²) = 1 pulg²

Por lo tanto, la razón común, r = a₂ / a₁ = 2/4 = a₃ / a₂ = 1/2

Las áreas de los cuadrados progresivos forman una progresión geométrica como sigue;

4, 4×(1/2), 4 ×(1/2)²,...,4×(1/2)^{\infty}

De donde obtenemos la serie geométrica formada de la siguiente manera;

4, 2, 1,..., ∞

2) La suma de 'n' términos de una progresión geométrica hasta el infinito para -1 <r <1 se da como sigue;

S_{\infty} = \dfrac{a}{1 - r}

Por lo tanto, la suma de las áreas de los cuadrados hasta el infinito se obtiene sustituyendo los valores de 'a' y 'r' en la ecuación anterior de la siguiente manera;

La \ suma \ al \ infinito \ del \ cuadrado \ S_{\infty}  = \dfrac{4 \ in.^2}{1 - \dfrac{1}{2} } = \dfrac{4 \ in.^2}{\left(\dfrac{1}{2} \right)} = 2 \times 4 \ in.^2= 8 \ in.^2

La suma al infinito de las áreas de los cuadrados, S_{\infty} = 8 in.²

7 0
3 years ago
Wyatt is training for a race. He will run 3
Nady [450]
You take 3/4 and multiply that by eight and you’ll get 6
8 0
4 years ago
Read 2 more answers
onsider the following hypothesis test: H 0: 50 H a: &gt; 50 A sample of 50 is used and the population standard deviation is 6. U
kondaur [170]

Answer:

a) z(e)  >  z(c)   2.94 > 1.64  we are in the rejection zone for H₀  we can conclude sample mean is great than 50. We don´t know how big is the population .We can not conclude population mean is greater than 50

b) z(e) < z(c)  1.18 < 1.64  we are in the acceptance region for   H₀  we can conclude H₀ should be true. we can conclude population mean is 50

c) 2.12  > 1.64 and we can conclude the same as in case a

Step-by-step explanation:

The problem is concerning test hypothesis on one tail (the right one)

The critical point  z(c) ;  α = 0.05  fom z table w get   z(c) = 1.64 we need to compare values (between z(c)  and z(e) )

The test hypothesis is:  

a) H₀      ⇒      μ₀  = 50     a)  Hₐ    μ > 50   ;    for value 52.5

                                          b) Hₐ    μ > 50   ;     for value 51

                                          c) Hₐ    μ > 50   ;      for value 51.8

With value 52.5

The test statistic    z(e)  ??

a)  z(e) =  ( μ  -  μ₀ ) /( σ/√50)      z(e) = (2.5*√50 )/6   z(e) = 2.94

2.94 > 1.64  we are in the rejected zone for H₀  we can conclude sample mean is great than 50. We don´t know how big is the population .We can not conclude population mean is greater than 50

b) With value 51

z(e) =  ( μ  -  μ₀ ) /( σ/√50)    ⇒  z(e) =  √50/6    ⇒  z(e) = 1.18

z(e) < z(c)  we are in the acceptance region for   H₀  we can conclude H₀ should be true. we can conclude population mean is 50

c) the value 51.8

z(e)  =  ( μ  -  μ₀ ) /( σ/√50)    ⇒ z(e)  = (1.8*√50)/ 6   ⇒ z(e) = 2.12

2.12  > 1.64 and we can conclude the same as in case a

8 0
3 years ago
Other questions:
  • Which of these situations would best be represented using a quadratic function: the distance driven on a road trip, the path of
    13·1 answer
  • Pete adds 78 to the fata set below. 20,32,32,45,50. Which statement below will be true?
    5·1 answer
  • XYZ is reflected across the line x = 3. What is the reflection image of Z?
    12·2 answers
  • Use the image above to identify and explain the relationship between the segments and circles A and B. In your explanation, be s
    6·1 answer
  • The quotient of a numder and -5 is 6. what is the number? <br><br>​
    6·2 answers
  • I. A rhombus is a special type of square. II. A rectangle is a special type of rhombus. III. A trapezoid is a special type of pa
    10·1 answer
  • Find x <br> Plz help me !!!
    12·1 answer
  • The cost of 12 pencils is rupees 37 4 by 5 find the cost of one pencil​
    14·1 answer
  • Can somebody help me with this
    15·1 answer
  • Write the standard form of the equation of each line.<br><br> 1. y= -2/5x+1<br> 2. y+3 = -3/2(x+1)
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!