Answer:
-30 m
Step-by-step explanation:
lmk if its right
<span>
You can write the equation in point-slope form, which has the format <em>y-y</em>subscript1=<em>m</em>(<em>x-x</em>subscript1), with <em>y</em>subscript1 and <em>x</em>subscript1 being the y and x coordinates for a point on the line, and <em>m</em> being the slope. </span>
<span /><span>Substitute a y and x coordinate into the equation so you have <em>y</em>-6=<em>m</em>(<em>x</em>-2)</span>
<span /><span><span>Then find the slope so you can replace <em>m</em>. The slope formula is <em />(<em>y</em>subscript2-<em>y</em>subscript1)/(<em>x</em>subscript2-<em>x</em>subscript1). </span><span>Substitute the coordinates in so you have <em>m</em>=(16-6)/(4-2), which simplifies to 10/2 and then 5.</span></span>
<span><span /></span><span>Now the equation is <em>y</em>-6=5(<em>x</em>-2)</span>
<span />If you want a different form, for example slope-intercept form, you can change it to that:
<span><em>y</em>-6=5(<em>x</em>-2)</span>
<span><em>y</em>=5x-4</span>
Answer:
The answer to your question is letter D
Step-by-step explanation:
Formula
m∠E = 
Data
m∠E = 48°
DGF = 228°
DF = x°
Substitution
48° = 
Solution
2(48) = 228 - x°
96 = 228 - x°
96 - 228 = - x°
- 132 = - x°
x° = 132°
Answer:
The width which gives the greatest area is 7.5 yd
Step-by-step explanation:
This is an application of differential calculus. Given the area as a function of the width, we simply need to differentiate the function with respect to x and equate to zero which yields; 15-2x=0 since the slope of the graph is zero at the turning points. Solving for x yields, x=7.5 which indeed maximizes the area of the pen