Yes, i<span>n mathematics, a </span>rational number<span> is any </span>number<span>that can be expressed as the quotient or fraction p/q of two integers, a numerator p and a non-zero denominator q.</span>
H1 (t) = 196 - 16 t-squared. / / / H2 (t) = 271-16t-squared. / / / In each function, 't' is the number of seconds after that ball is dropped. / / / Each function is only true until the first time that H=0, that is, until the first bounce. Each function becomes very complicated after that, and we would need more information in order to write it.
Answer:
the answer is 11.6 feet
Step-by-step explanation:
you simply subtract the feet of the depth he was at at 2:55pm from his depth at 2:50pm
The r% of a quantity x is computed by dividing x in 100 parts, and considering r of such parts. So, the r% of the male is

and similarly, the r% of female is

The number of males decreased by this quantity, so now it is

and the number of female increased by this quantity, so now it is

we know that these two new counts are the same number, so we can build and solve the equality

Subtract 20 and add 0.3r from both sides:

Divide both sides by 0.5 to solve for r:

Let's check the answer
The 20% of 30 is
, while the 20% of 20 is 4. So, we are stating that
which is true because both expressions evaluate to 24.
Answer: 0.0035
Step-by-step explanation:
Given : The readings on thermometers are normally distributed with a mean of 0 degrees C and a standard deviation of 1.00 degrees C.
i.e.
and
Let x denotes the readings on thermometers.
Then, the probability that a randomly selected thermometer reads greater than 2.17 will be :_
![P(X>2.7)=1-P(\xleq2.7)\\\\=1-P(\dfrac{x-\mu}{\sigma}\leq\dfrac{2.7-0}{1})\\\\=1-P(z\leq2.7)\ \ [\because\ z=\dfrac{x-\mu}{\sigma}]\\\\=1-0.9965\ \ [\text{By z-table}]\ \\\\=0.0035](https://tex.z-dn.net/?f=P%28X%3E2.7%29%3D1-P%28%5Cxleq2.7%29%5C%5C%5C%5C%3D1-P%28%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5Cleq%5Cdfrac%7B2.7-0%7D%7B1%7D%29%5C%5C%5C%5C%3D1-P%28z%5Cleq2.7%29%5C%20%5C%20%5B%5Cbecause%5C%20z%3D%5Cdfrac%7Bx-%5Cmu%7D%7B%5Csigma%7D%5D%5C%5C%5C%5C%3D1-0.9965%5C%20%5C%20%5B%5Ctext%7BBy%20z-table%7D%5D%5C%20%5C%5C%5C%5C%3D0.0035)
Hence, the probability that a randomly selected thermometer reads greater than 2.17 = 0.0035
The required region is attached below .