Answer:
Rate of change of volume of the pile 
Explanation:
Given -
Rate of increase of the base of the pile
inches per minute
Height of the pile
the radius of the base
Let "h" be the height of the pile and "r" be the radius of the base.
Then 
Radius "r"
inches
Rate of change of radius i.e

Volume of conical pile

Change in volume of conical pile

Substituting the value of rate of change of radius, we get -

Rate of change of volume of the pile 
The answer is stem cells, they consist of classes of cells
that are undifferentiated and are able to be classified them into types like
specialized cells. They consist of having two main sources that will help them
develop and mature, these main sources are called the embryonic stem cell and
the adult stem cell.
Answer:Increase in ambient global temperatures.
Recyling energy to be used again
Regulation of oxygen and carbon dioxide levels
An increase of erosion and siltation along waterways
Explanation:
Conservational biologists think about the preservation of ecosystem by maintaining the environment in a human control way.
Increase in ambient global temperatures.: The humans must prevent the increase in global temperature worldwide by preventing the rise of greenhouse gases which can lead to global warming worldwide.
Recyling energy to be used again: The sources of energy like wood, waste water can be recycled again for reutilization.
Regulation of oxygen and carbon dioxide levels.: The oxygen and carbon dioxide levels must be regulated. As oxygen is the basic requirement for respiration. The increase in carbon dioxide levels due to human activities is likely to cause respiratory diseases and health hazards in living beings.
An increase of erosion and siltation along waterways.: The erosion and siltation will likely to deposit nutrients and debris which may either contaminate the waterway or may cause eutrophication.
To know what type of transport occurred the lab and collected data are needed. As they are not present an explanation of the different transport's types, will be given.
Water, proteins, ions, and molecules of different sizes can pass through the cell membrane using different types of transports. The transport that each molecule uses depends on the concentration, size, and polarity.
We can classify the types of transport as active and passive.
Passive transport is the one that does not need energy to happen since the molecules move from a place of high concentration to a one of lower concentration. In this group, we have:
- Simple diffusion: small molecules in high concentration on one side of the membrane; move to the other side due to the difference in concentration.
- Osmosis: water passes through the membrane from a place of low concentration of molecules to one of high concentration. Water moves inside or outside the cell to valance the concentration of solutes on both sides of the membrane.
- Facilitated diffusion: uses proteins to transport large molecules, ions, or hydrophobic molecules from one side to the other. In this type of transport, we have proteins that form channels so those hydrophobic molecules can pass through the lipid membrane, and carrier proteins, which binds to a specific molecule changing their shape and transporting the molecule.
Active transport needs the<em> energy</em> to transport molecules; since it goes against the gradient's concentration. In this group, we have:
- Sodium-Potassium pump: uses ATP to move sodium outside the cell and potassium to the inside. The ions with this transport go to where they are most concentrated.
In conclusion, there are different types of transport; they depend on the concentration or type of molecule. To find out what mechanism of transport occurred in the lab, look at the components of the experiment and analyze which of these transports could be present.
Learn more at:
brainly.com/question/18565254