Answer:
A ∩ B = {1, 3, 5}
A - B = {2, 4}
Step-by-step explanation:
The given problem regards sets and set notation, a set can simply be defined as a collection of values. One is given the following information:
A = {1, 2, 3, 4, 5}
B = {1, 3, 5, 6, 9}
One is asked to find the following:
A ∩ B,
A - B
1. Solving problem 1
A ∩ B,
The symbol (∩) in set notation refers to the intersection between the two sets. It essentially asks one to find all of the terms that two sets have in common. The given sets (A) and (B) have the values ({1, 3, 5}) in common thus, the following statement can be made,
A ∩ B = {1, 3, 5}
2. Solving problem 2
A - B
Subtracting two sets is essentially taking one set, and removing the values that are shared in common with the other set. Sets (A) and (B) have the following values in common ({1, 3, 5}). Thus, when doing (A - B), one will omit the values ({1, 3, 5}) from set (A).
A - B = {2, 4}
<span>Answer 61 73-66= 7 21-13 = 8 ?? -52= 9 20-10 = 10 ??=61</span>
Answer:
a) The percentage of adults who smoke are decreasing with time. b) the equation that best described this data is y=-0.3364x+22.809 (R^2=0.859) in which y is the percentage of adults who smoke and x the number of years. c) the percentage of adults who smoke will be 19.8% and it will not meet the expected 12%, it would take 32 years to reach that value.
Step-by-step explanation:
The data can be plotted to which years is the independent variable and percentage of adults who smoke is the dependent variable. The linear trendline that described this data has a negative slope which indicates that the percentage of adults is decreasing with time. In order to determine if the OSH target is being met, the x is replaced by 9 which is the goal period of nine years. The y is 19% which is higher than the 12% goal. In order to know the period it will take to the reach the goal of 12%, the y is replaced by 12 in the curve and the x is the answer in years = 32 years.
Answer:
c. Weights of babies are normally distributed
Step-by-step explanation:
The research has been conducted to identify the weight of new born babies in comparison to the weight of their mother. The samples are collected from young mothers who are at age of 16 to 18. The babies average weight turned out to be 7.3 pounds. It is assumed that the weight of babies is normally distributed.
24 students forget their pencil out of 120 students.