1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
jonny [76]
3 years ago
8

Which is the graph of the function f(x) = Negative StartRoot x EndRoot?

Mathematics
2 answers:
emmasim [6.3K]3 years ago
6 0

Answer:

The answer is the third graph or c

Step-by-step explanation:

I just did the test and the other guy is correct to.

Maksim231197 [3]3 years ago
6 0

Answer:

If you are on edg 2021 then it is the graph with the line going down from 0 to the bottom left square of the graph

Step-by-step explanation:

So it is the first graph.

You might be interested in
How Do You Graph Order Pairs
kakasveta [241]
Each "ordered pair" describes one point on the graph. It's a pair of numbers.

-- The first number is the 'x'-coordinate of the point ... it tells how far the point
is left or right of the center.

-- The second number is the 'y'-coordinate of the point ... it tells how far the
point is up or down from the center. 

-- With that much information, you can find any point on an infinite piece of
paper that has no ends.  You only need an ordered pair of numbers, and
you need to know where the center of left-right is, and where the center of
up-down is.  Those lines are always drawn on the graph before you start
marking your ordered pairs.
3 0
3 years ago
"What is 100/100 in simplest form
Mrrafil [7]
The simplest form is 1
4 0
4 years ago
Read 2 more answers
assuming the side adjacent to mint and rosemary is the base, what is the height of each triangle on which parsley and sage grow
MatroZZZ [7]
Is there a picture that you can attach?
4 0
3 years ago
I need help plssssss
Ymorist [56]

Answer:

36cm^2

Step-by-step explanation:

you multiply base times height or length times width to get area

5 0
3 years ago
Please help, trig is a real problem for me ​
Andreyy89

Answer:

2. cotФ = -\frac{4}{3}

3. sec²Ф - tan²Ф = 1

4. \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1} = cos²∝

5. The value of sin x is \frac{1}{2}

6. cos 15° =  \frac{\sqrt{6}+\sqrt{2}}{4}

7. tan(α + β) = -\frac{63}{16}

8. sin(π - Ф) = sin Ф

9. cos 2Ф = -\frac{1}{2}

10. sin 2Ф = 0.96

Step-by-step explanation:

2.

∵ cos Ф = -\frac{4}{5}

∵ 90° < Ф < 180°

- That means Ф lies on the 2nd quadrant

∴ sin Ф is a positive value

∵ sin²Ф + cos²Ф = 1

∴ sin²Ф + ( -\frac{4}{5} )² = 1

∴ sin²Ф +  \frac{16}{25} = 1

- Subtract from both sides  \frac{16}{25}

∴ sin²Ф =  \frac{9}{25}

- Take √ for both sides

∴ sinФ = \frac{3}{5}

∵ cotФ = cosФ ÷ sinФ

∴ cotФ = -\frac{4}{5} ÷  \frac{3}{5}

∴ cotФ = -\frac{4}{3}

3.

The expression is sec²Ф - tan²Ф

∵ tan²Ф = sec²Ф - 1

- Substitute tan²Ф by the right hand side in the expression

∴ sec²Ф - tan²Ф = sec²Ф - (sec²Ф - 1)

∴ sec²Ф - tan²Ф = sec²Ф - sec²Ф + 1

- Simplify the right hand side

∴ sec²Ф - tan²Ф = 1

4.

The expression is  \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1}

∵ The numerator is sin²∝ + cos²∝

∵ sin²∝ + cos²∝ = 1

∴ The numerator = 1

∵ The denominator is tan²∝ + 1

∵ tan²∝ = \frac{sin^{2}\alpha}{cos^{2}\alpha}

∴ tan²∝ + 1 =  \frac{sin^{2}\alpha}{cos^{2}\alpha} + 1

- Change 1 to  fraction \frac{cos^{2}\alpha}{cos^{2}\alpha}

∴ tan²∝ + 1 =  \frac{sin^{2}\alpha}{cos^{2}\alpha} +  \frac{cos^{2}\alpha}{cos^{2}\alpha}

- Add the two fractions  

∴ tan²∝ + 1 =  \frac{sin^{2}\alpha+cos^{2}\alpha }{cos^{2}\alpha}

∵ sin²∝ + cos²∝ = 1

∴ tan²∝ + 1 = \frac{1}{cos^{2}\alpha}

∴ The denominator =  \frac{1}{cos^{2}\alpha}

∴  \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1} = \frac{1}{\frac{1}{cos^{2}\alpha}}

- Remember denominator the denominator will be a numerator

∴ \frac{sin^{2}\alpha+cos^{2}\alpha}{tan^{2}\alpha+1} = cos²∝

5.

∵ tan x cos x = \frac{1}{2}

∵ tan x = \frac{sin(x)}{cos(x)}

∴ \frac{sin(x)}{cos(x)} × cos x = \frac{1}{2}

- Simplify it by canceling cos x up with cos x down

∴ sin x = \frac{1}{2}

∴ The value of sin x is \frac{1}{2}

6.

∵ cos(Ф - ∝) = cosФ cos∝ + sinФ sin∝

∵ 45 - 30 = 15

∴ cos 15° = cos(45 - 30)°

- Use the rule above to find the exact value

∵ cos(45 - 30)° = cos 45° cos 30° + sin 45° sin 30°

∵ cos 45° = \frac{\sqrt{2}}{2} and sin 45° =

∵ cos 30° = \frac{\sqrt{3}}{2} and sin 30° = \frac{1}{2}

∴ cos(45 - 30)° =  \frac{\sqrt{2}}{2} ×  \frac{\sqrt{3}}{2} +  

∴ cos(45 - 30)° =  \frac{\sqrt{6}}{4} +  \frac{\sqrt{2}}{4}  = \frac{\sqrt{6}+\sqrt{2}}{4}

∴ cos 15° =  \frac{\sqrt{6}+\sqrt{2}}{4}

7.

∵ tan(α + β) = \frac{tan\alpha+tan\beta}{1-tan\alpha.tan\beta}

∵ cos α = \frac{5}{13} and 0° < α < 90°

- That means α is in the 1st quadrant, then all trigonometry

    ratios are positive

∵ sin²α + cos²α = 1

∴ sin²α + ( \frac{5}{13} )² = 1

∴ sin²α + \frac{25}{169}  = 1

- Subtract  \frac{25}{169}  from both sides

∴ sin²α =  \frac{144}{169}

- Take √ for both sides

∴ sin α =  \frac{12}{13}

∵ tan α = sin α ÷ cos α

∴ tan α = \frac{12}{13} ÷ \frac{5}{13}

∴ tan α = \frac{12}{5}  

∵ sin β = \frac{3}{5} and 0° < β < 90°

∵ sin²β + cos²β = 1

∴ ( \frac{3}{5} )² + cos²β = 1

∴ \frac{9}{25} + cos²β = 1

- Subtract  \frac{9}{25}  from both sides

∴ cos²β =  \frac{16}{25}

- Take √ for both sides

∴ cos β =  \frac{4}{5}

∵ tan β = sin β ÷ cos β

∴ tan β = \frac{3}{5} ÷ \frac{4}{5}

∴ tan β = \frac{3}{4}  

- Substitute the values of tan α and tan β in the tan (α + β)

∵ tan(α + β) = \frac{tan\alpha+tan\beta}{1-tan\alpha.tan\beta}

∴ tan(α + β) = \frac{\frac{12}{5}+\frac{3}{4}}{1-(\frac{12}{5})(\frac{3}{4})}

∴ tan(α + β) = -\frac{63}{16}

8.

∵ sin(α - β) = sin α cos β - cos α sin β

∴ sin(π - Ф) = sin π cos Ф - cos π sin Ф

∵ sin π = 0 and cos π = -1

∴ sin(π - Ф) = (0) × cos Ф - (-1) × sin Ф

∴ sin(π - Ф) = 0 + sin Ф

∴ sin(π - Ф) = sin Ф

9.

∵ cos 2Ф = 2 cos²Ф - 1

∵ cos Ф = \frac{1}{2}

∴ cos 2Ф = 2 ( \frac{1}{2} )² - 1

∴ cos 2Ф = 2 × \frac{1}{4} - 1

∴ cos 2Ф = \frac{1}{2} - 1

∴ cos 2Ф = -\frac{1}{2}

10.

∵ sin 2Ф = 2 sinФ cosФ

∵ cosФ = 0.6 and 0° < Ф < 90°

- That means Ф is in the 1st quadrant and all its trigonometry

   ratios are positive

∵ sin²Ф + cos²Ф = 1

∴ sin²Ф + (0.6)² = 1

∴ sin²Ф + 0.36 = 1

- Subtract 0.36 from both sides

∴ sin²Ф = 0.64

- Take √ for both sides

∴ sinФ = 0.8

- Substitute the values of sinФ and cosФ in the rule above

∴ sin 2Ф = 2(0.8)(0.6)

∴ sin 2Ф = 0.96

4 0
4 years ago
Other questions:
  • Find the factorization of the polynomial below.
    13·2 answers
  • MATH EXPERTS I NEED YOU! Is it graph A, B, C, or D?
    12·2 answers
  • The 2 way radio Michael wants runs on 6 batteries. The store sells batteries in packs of 10. What
    9·2 answers
  • Combine like terms to simplify the expression:<br> -6 + 8 − 3x + 13x
    10·1 answer
  • Can someone please help me I need help
    15·1 answer
  • A pyramid has a square base with side s. The height of the pyramid is that of its side. What is the expression for the volume of
    6·1 answer
  • 1. You deposit $1,000 in the bank when your son is born. If the money earns 5% interest,
    14·1 answer
  • I need help please, I have no idea what to do, my brain's dead​
    13·2 answers
  • Based on the values given in the table, which triangle is a right triangle?
    11·2 answers
  • 9 cos(sin¯¹(x)) = √81 – 81x²
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!