I hope this helps you
8=x+4
x=8-4
x=4
We can model the function between a and b as a linear function of negative slope because it is a short interval and the change is not very significant.
We have then that the average rate of change in that interval is:
m = (f (a) - f (b)) / (a-b)
Substituting the values:
m = (34.25 - 26) / (2.5-3.6)
m = -7.5
Negative, because the function decreases in that interval.
Answer:
a reasonable estimate of the average rate of change of the height of the rocket, in meters per second, between a and b seconds is:
m = -7.5 m / s
Answer:
4 to the second power = 16. that leaves us with 16 - 2 ( 3 x 5 + 1). next, multiply 3 x 5 = 15. that leaves us with 16 - 2 ( 15 + 1 ). next, add 15 + 1 = 16. that leaves us with 16 - 2 ( 16 ). next, multiply 2 ( 16 ) = 32. finally, subtract 16 - 32 = -16
Step-by-step explanation:
your answer is -16. hope this helps
Simplify \frac{21}{2}x
2
21
x to \frac{21x}{2}
2
21x
\frac{21x}{2}-\frac{3}{4}(2x+5)=\frac{3}{8}
2
21x
−
4
3
(2x+5)=
8
3
2 Simplify \frac{3}{4}(2x+5)
4
3
(2x+5) to \frac{3(2x+5)}{4}
4
3(2x+5)
\frac{21x}{2}-\frac{3(2x+5)}{4}=\frac{3}{8}
2
21x
−
4
3(2x+5)
=
8
3
3 Multiply both sides by 44 (the LCM of 2, 42,4)
42x-3(2x+5)=\frac{3}{2}42x−3(2x+5)=
2
3
4 Expand
42x-6x-15=\frac{3}{2}42x−6x−15=
2
3
5 Simplify 42x-6x-1542x−6x−15 to 36x-1536x−15
36x-15=\frac{3}{2}36x−15=
2
3
6 Add 1515 to both sides
36x=\frac{3}{2}+1536x=
2
3
+15
7 Simplify \frac{3}{2}+15
2
3
+15 to \frac{33}{2}
2
33
36x=\frac{33}{2}36x=
2
33
8 Divide both sides by 3636
x=\frac{\frac{33}{2}}{36}x=
36
2
33
9 Simplify \frac{\frac{33}{2}}{36}
36
2
33
to \frac{33}{2\times 36}
2×36
33
x=\frac{33}{2\times 36}x=
2×36
33
10 Simplify 2\times 362×36 to 7272
x=\frac{33}{72}x=
72
33
11 Simplify \frac{33}{72}
72
33
to \frac{11}{24}
24
11
x=\frac{11}{24}x=
24
11
X=11 over 24
Answer:
9% decrease
Step-by-step explanation:
Percentage Decrease = [ (Starting Value - Final Value) / |Starting Value| ] × 100