Hey Jay,
Since we can't see the graphs, we can't be entirely sure, but given that we are trying to model the population size of a species of bird that is slowly going extinct. I would say the best graph would be a line graph. Line graphs show changes over time so this would be the best graph to use. Hope this helped!
Cheers,
Izzy
Answer:
Step-by-step explanation:0.04
<h3>
Answer: -13</h3>
=======================================
Explanation:
g(-3) = 2 means x = -3 and y = 2 pair up together to form the point (-3,2)
g(1) = -4 means we have the point (1,-4)
Find the slope of the line through the two points (-3,2) and (1,-4)
m = (y2-y1)/(x2-x1)
m = (-4-2)/(1-(-3))
m = (-4-2)/(1+3)
m = -6/4
m = -3/2
m = -1.5
The general slope intercept form y = mx+b turns into y = -1.5x+b after replacing m with -1.5
Plug in (x,y) = (-3,2) which is one of the points mentioned earlier and we end up with this new equation: 2 = -1.5*(-3) + b
Let's solve for b
2 = -1.5*(-3)+b
2 = 4.5 + b
2-4.5 = 4.5+b-4.5 .... subtract 4.5 from both sides
-2.5 = b
b = -2.5
Therefore, y = mx+b becomes y = -1.5x-2.5 meaning the g(x) function is g(x) = -1.5x-2.5
The last step is to plug in x = 7 and compute
g(x) = -1.5*x - 2.5
g(7) = -1.5*7 - 2.5
g(7) = -10.5 - 2.5
g(7) = -13
Answer:
20
Step-by-step explanation:
The answer would be 20 due to the fact that it would have to be 50 divided by 2.5 to get the answer of how many steps and 50 divided by 2.5 would equal 20