Third term = t3 = ar^2 = 444 eq. (1)
Seventh term = t7 = ar^6 = 7104 eq. (2)
By solving (1) and (2) we get,
ar^2 = 444
=> a = 444 / r^2 eq. (3)
And ar^6 = 7104
(444/r^2)r^6 = 7104
444 r^4 = 7104
r^4 = 7104/444
= 16
r2 = 4
r = 2
Substitute r value in (3)
a = 444 / r^2
= 444 / 2^2
= 444 / 4
= 111
Therefore a = 111 and r = 2
Therefore t6 = ar^5
= 111(2)^5
= 111(32)
= 3552.
<span>Therefore the 6th term in the geometric series is 3552.</span>
Answer:
true
Step-by-step explanation:
Answer:
for m∠SRQ x = 3
for m∠QRP x = 5
Step-by-step explanation:
1. 6x +2. 6 is being multiplied by a number so to find that number we do teh opposite
6x/2 = 3
drop the x then u have x = 3
2. 2x+10. 2 is being muliplied by a number so to find that number we do teh opposite
10/2x = 5
drop the x then u have x = 5
Answer:
93 degrees
Step-by-step explanation:
The angles in a triangle add to be 180 so
180-56-31=x
x=93
The answers that would fill in the blanks are
- 2r
- a circle
- an annulus
- 1/3πr³
- 4/3πr³
<h3>What is the Cavalier's principle?</h3>
This principle states that if two solids are of equal altitude then the sections that the planes would make would have to be parallel and also be at the same distances from their bases which are equal such that the volumes of the solids would be equal.
Now we have to fill in the blanks with the solution.
For every corresponding pair of cross sections, the area of the cross section of a sphere with radius r is equal to the area of the cross section of a cylinder with radius r and height<u> 2r</u> minus the volume of two cones, each with a radius and height of r. A cross section of the sphere is a <u>circle</u> base of cylinder, is and a cross section of the cylinder minus the cones, taken parallel to the base of cylinder, is an <u>annulus_ </u>.The volume of the cylinder with radius r and height 2r is 2πr³, and the volume of each cone with radius r and height r is 1/3πr³. So the volume of the cylinder minus the two cones is 4/3πr³. Therefore, the volume of the sphere is by Cavalieri's principle
Read more on Cavalieri's principle here
brainly.com/question/22431955
#SPJ1