5.15 for the first hour after subtracting 12.20(7.15)
take a pic of what and where are the questions???
Answer:
E (Y) = 3
Step-by-step explanation:
If a 4-sided die is being rolled repeatedly; and the odd-numbered rolls (1st 3rd,5th, etc.)
The probability of odd number roll will be, p(T) = 
However, on your even-numbered rolls, you are victorious if you get a 3 or 4. Also, the probability of even number roll, p(U) = 
In order to calculate: E (Y); We can say Y to be the number of times you roll.
We know that;
E (Y) = E ( Y|T ) p(T) + E ( Y|U ) p(U)
Let us calculate E ( Y|T ) and E ( Y|U )
Y|T ≅ geometric = 
Y|U ≅ geometric = 
also; x ≅ geometric (p)
∴ E (x) =
⇒
= 4 ; also
= 2
E (Y) = 4 ×
+ 2 ×
= 2+1
E (Y) = 3
Answer:
..
...
Step-by-step explanation:
..
-- They're losing employees . . . so you know that the line will slope down, and
its slope is negative;
-- They're losing employees at a steady rate . . . so you know that the slope is
the same everywhere on the line; this tells you that the graph is a straight line.
I can see the function right now, but I'll show you how to go through the steps to
find the function. I need to point out that these are steps that you've gone through
many times, but now that the subject pops up in a real-world situation, suddenly
you're running around in circles with your hair on fire screaming "What do I do ?
Somebody give me the answer !".
Just take a look at what has already been handed to you:
0 months . . . 65 employees
1 month . . . . 62 employees
2 months . . . 59 employees
You know three points on the line !
(0, 65) , (1, 62) , and (2, 59) .
For the first point, 'x' happens to be zero, so immediately
you have your y-intercept ! ' b ' = 65 .
You can use any two of the points to find the slope of the line.
You will calculate that the slope is negative-3 . . . which you
might have realized as you read the story, looked at the numbers,
and saw that they are <u>firing 3 employees per month</u>.
("Losing" them doesn't quite capture the true spirit of what is happening.)
So your function ... call it ' W(n) ' . . . Workforce after 'n' months . . .
is <em>W(n) = 65 - 3n</em> .