1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
erastovalidia [21]
2 years ago
7

Se requiere dos personas para construir una barda de 20 m de largo y 1.5 m de alto en dos días ¿cuántas personas se necesitan pa

ra construir otra barda igual en mediodía?
Mathematics
1 answer:
Wewaii [24]2 years ago
6 0

Answer:

Definamos R como la "velocidad" a la que una persona puede construir la barda dada.

Supongamos que la persona necesita un tiempo T para construir la barda, entonces tenemos la relación:

R*T = 1 barda.

Si dos personas trabajan juntas la velocidad de trabajo va a ser (R + R), y sabemos que ellos pueden completar el trabajo en 2 días, entonces:

(R + R)*2 días = 1 barda

(2*R)*2 días = 1 barda

(2*R) = (1/2) barda por día

R = (1/2)*(1/2) barda por día = (1/4) barda por día.

Esto significa que una persona puede completar un cuarto de la barda en un día de trabajo.

Ahora queremos saber cuantas personas se necesitan para construir una barda en solo medio día, entonces debemos resolver:

(N*R)*0.5 días = 1 barda

Donde N es el número de personas que queremos obtener.

(N* (1/4) barda por día)*0.5 días = 1 barda

N*(1/4) barda por día = (1/0.5) bardas por día = 2 bardas por día

N = 2/(1/4) = 2*4 = 8

N = 8

Se necesitan 8 personas para construir una barda en medio día.

You might be interested in
The lengths of brook trout caught in a certain Colorado stream are normally distributed with a mean of 14 inches and a standard
mezya [45]

Answer:

0.6563 or 65.63% of brook trout caught will be between 12 and 18 inches

Step-by-step explanation:

Mean trout length (μ) = 14 inches

Standard deviation (σ) = 3 inches

The z-score for any given trout length 'X' is defined as:  

z=\frac{X-\mu}{\sigma}  e interval

For a length of X =12 inches:

z=\frac{12-14}{3}\\z=-0.6667

According to a z-score table, a score of -0.6667 is equivalent to the 25.25th percentile of the distribution.

For a length of X =18 inches:

z=\frac{18-14}{3}\\z=1.333

According to a z-score table, a score of 1.333 is equivalent to the 90.88th percentile of the distribution.

The proportion of trout caught between 12 and 18 inches, assuming a normal distribution, is the interval between the equivalent percentile of each length:

P(12\leq X\leq 18) = 90.88\% - 25.25\%\\P(12\leq X\leq 18) = 65.63\%

8 0
3 years ago
The sum of -6 times a number x and 9 is at least 27. what are the possible values of the number​
liubo4ka [24]
5 I think 6 I think 7 I think I just want points
6 0
3 years ago
Suppose Johnny invests $2,745 into an account, which has been earning interest for many years and he now has a total of $39,974.
Doss [256]
A negative number in this wouldn't be applicable.
Johnny started out with $2,745 in the beginning, EARNING (This being the key word) interest each year. Therefore, he comes out with $39,974, not being a negative number. 

Hope I helped! ^-^
5 0
3 years ago
H/5 = 5.1<br> What is H?
inysia [295]
This basically says all the steps ! If you have any questions just tell me :)

5 0
3 years ago
Read 2 more answers
Ava buys a book for 8.58. She pays with a $10 bill. How much charge will she get
navik [9.2K]
1.42 because you subtract 10 from the price
8 0
3 years ago
Read 2 more answers
Other questions:
  • Simplify 20÷5+8^2×2-9
    10·2 answers
  • Two thirds a number d to the third power
    7·1 answer
  • Factor 2x^3+4x^2-6x+9
    15·2 answers
  • What are the slope, m, and y-intercept, (0,b), of the line described by the equation 3x+6=12
    14·1 answer
  • Question 3 (Fill-In-The-Blank Worth 5 points)
    9·1 answer
  • Really urgent!!!!
    6·1 answer
  • HURRY I NEED HELP PLS
    9·1 answer
  • A stack of boards is 21 inches high. The boards are 1 3/4 inches thick.
    12·1 answer
  • A 98% confidence interval for a proportion is found to be (0.62, 0.68).
    7·1 answer
  • Please need help fast<br> Instructions: Match the following data with the correct histogram.
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!