I believe the balanced chemical equation is:
C6H12O6 (aq) + 6O2(g)
------> 6CO2(g) + 6H2O(l)
First calculate the
moles of CO2 produced:
moles CO2 = 25.5 g
C6H12O6 * (1 mol C6H12O6 / 180.15 g) * (6 mol CO2 / 1 mol C6H12O6)
moles CO2 = 0.8493 mol
Using PV = nRT from
the ideal gas law:
<span>V = nRT / P</span>
V = 0.8493 mol *
0.08205746 L atm / mol K * (37 + 273.15 K) / 0.970 atm
<span>V = 22.28 L</span>
Answer:
2.03 × 10⁻⁵ M
Explanation:
Step 1: Given data
Concentration of Pb(NO₃)₂: 6.73 ppm = 6.73 mg/L
Step 2: Convert 6.73 mg/L to mol/L
The molar mass of 331.2 g/mol.
6.73 × 10⁻³ g/L × 1 mol/331.2 g = 2.03 × 10⁻⁵ mol/L = 2.03 × 10⁻⁵ M
Step 3: Calculate the molar concentration of Pb²⁺
Let's consider the ionization of Pb(NO₃)₂.
Pb(NO₃)₂(aq) ⇒ Pb²⁺(aq) + 2 NO₃⁻(aq)
The molar ratio of Pb(NO₃)₂ to Pb²⁺ is 1:1. The molar concentration of Pb²⁺ is 1/1 × 2.03 × 10⁻⁵ M = 2.03 × 10⁻⁵ M.
Boyle's law gives the relationship between pressure and volume of gas. It states that for a fixed amount of gas at constant temperature, pressure is inversely proportional to volume of gas.
PV = k
where P - pressure, V - volume and k - constant
P1V1 = P2V2
where parameters for the first instance are on the left side and parameters for the second instance are on the right side of the equation.
substituting the values in the equation
0.947 atm x 150.0 mL = 0.987 atm x V
V = 144 mL
therefore new volume is 144 mL
Answer:
1. KNO3
2. Ca(NO3)2
3. CaCl2
4. KCl
Explanation:
In each of the neutralization reactions, the H from one of the reactant(acid) will combine with the OH from the other reactant (base) to form water while the other elements combine to give the salt as shown below:
1. HNO3 + KOH → H2O + KNO3
The salt produced is KNO3
2. 2HNO3 + Ca(OH)2 → 2H2O + Ca(NO3)2
The salt produced is Ca(NO3)2
3. 2HCl +Ca(OH)2 → 2H2O + CaCl2
The salt produced is CaCl2
4. HCl +KOH → H2O + KCl
The salt produced is KCl