Resonance, leaving group, carbonyl carbon delta+, and steric effect is the most crucial variables that affect the relative reactivity of a functional group containing a carbonyl in an addition or substitution process.
Discussion:
1. Carbonyl Carbon Delta+: The carbonyl group becomes more electrophilic and accelerates nucleophilic assault when the carbonyl carbon delta+ is bigger.
2. Resonance: When the carbonyl is transformed into the tetrahedral adduct, it may be lost. Loss of resonance increases the energy of the transition state for this nucleophilic assault because resonance has the function of stabilizing. Therefore, a carbonyl functional group's resistance to nucleophilic attack increases as resonance in the group increases in importance.
3. Leaving group: Tetrahedral adduct fragmentation is encouraged by a better LG.
4. Steric effects: The nucleophilic attack on carbonyl carbon is delayed when sterically impeded.
Learn more about carbonyl here:
brainly.com/question/21440134
#SPJ4
Answer:
Knowing this, researchers from the University of Southern Denmark decided to investigate the size of these hypothetical hidden particles. According to the team, dark matter could weigh more than 10 billion billion (10^9) times more than a proton.
Explanation:
If this is true, a single dark matter particle could weigh about 1 microgram, which is about one-third the mass of a human cell (a typical human cell weighs about 3.5 micrograms), and right under the threshold for a particle to become a black hole.
Answer:
В. No, because the mass of the reactants is less than the mass of the products.
Explanation:
Chemical equation:
NaBr + Cl₂ → 2NaCl + Br₂
The given equation is not balanced because number of moles of sodium and bromine atoms are less on reactant side while more on the product side.
There are one mole of sodium and one mole of bromine atom on left side of equation while on right side there are 2 moles of bromine and 2 moles of sodium atom are present. The number of moles of chlorine atoms are balanced.
Balanced chemical equation:
2NaBr + Cl₂ → 2NaCl + Br₂
Now equation is balanced. Number of moles of sodium , chlorine and bromine atoms are equal on both side.
The correct answer is this: THE NUCLEUS OF AN ATOM SPLITS INTO FRAGMENTS, RELEASING A LARGE AMOUNT OF ENERGY.
Nuclear fission is the process in which the nucleus of a radioactive element split into two different nucleic of smaller sizes of different elements with a large release of energy. Nuclear fission process is usually used to provide energy for electricity generation.