Answer:
1. CO₂ → C + O₂
2. Fe₂ + O₂ → 2FeO
3. 2Al + 3CuO→ Al₂O₃ + 3Cu
Explanation:
1. 1 mol of CO₂ decomposes to 1 mol of C and 1 mol of oxygem
2. 1 mol of Fe₂ reacts with 1 mol of oxygen to produce 2 moles of iron (II) oxide
3. 2 moles of Al, reacts with 3 moles of cupper(II) oxide to produce 1 mol of aluminum dioxide and 3 moles of cupper
Answer:
Most common insulation materials work by slowing conductive heat flow and--to a lesser extent--convective heat flow. Radiant barriers and reflective insulation systems work by reducing radiant heat gain. To be effective, the reflective surface must face an air space.
Explanation:
To be effective, the reflective surface must face an air space.
a) The reaction is exothermic since the overall enthalpy change is negative. this means that the system has lost energy to the environment, namely, the apparatus and due to drought.
b) We first calculate the number of moles in 3.55 grams of magnesium.
number of moles= mass/ atomic mass
=3.55/24
=0.1479 moles(to 4sf)
now, if 2 moles of magnesium give -1204kJ
How much energy is given by 0.1479 moles
= (0.1479×-1204kJ)
=-89.0358kJ (don't forget the negative sign)
c) two molesof MgO produces -1204kJ of energy
then -234kJ will be produced by
=(-234kJ×2moles)/1204kJ
=0.3887moles
one mole of MgO weighs 24+16=40
therefore the mass produced is 0.3887moles×40=15.548grams
(d) we first find the number of moles of MgO in 40.3 grams
number of moles=mass/RFM
=40.3g/40= 1.0075moles
if 2 moles of MgO give 1204 kJ then decomposing 1.0075 moles requires
(1.0075 moles×1204kJ)/2=606.515kJ
Answer:
34.4
Explanation:
You would divide the mg by 1000 to get the number of grams.