Answer: In Spanish
¿Cómo se vuelven resistentes las bacterias a los antibióticos?
R: Las bacterias pueden volverse resistentes a los antibióticos de varias maneras. Algunas bacterias pueden "neutralizar" un antibiótico cambiándolo de una manera que lo hace inofensivo. Otros han aprendido a bombear un antibiótico fuera de la bacteria antes de que pueda causar algún daño. Algunas bacterias pueden cambiar su estructura externa, por lo que el antibiótico no tiene forma de adherirse a la bacteria que está diseñada para matar.
Después de exponerse a los antibióticos, a veces una de las bacterias puede sobrevivir porque encontró una manera de resistir el antibiótico. Si incluso una bacteria se vuelve resistente a los antibióticos, puede multiplicarse y reemplazar todas las bacterias que fueron eliminadas. Eso significa que la exposición a los antibióticos proporciona una presión selectiva que hace que las bacterias sobrevivientes sean más propensas a ser resistentes. Las bacterias también pueden volverse resistentes a través de la mutación de su material genético.
Answer in English :
How do bacteria become resistant to antibiotics?
A: Bacteria can become resistant to antibiotics through several ways. Some bacteria can “neutralize” an antibiotic by changing it in a way that makes it harmless. Others have learned how to pump an antibiotic back outside of the bacteria before it can do any harm. Some bacteria can change their outer structure so the antibiotic has no way to attach to the bacteria it is designed to kill.
After being exposed to antibiotics, sometimes one of the bacteria can survive because it found a way to resist the antibiotic. If even one bacterium becomes resistant to antibiotics, it can then multiply and replace all the bacteria that were killed off. That means that exposure to antibiotics provides selective pressure making the surviving bacteria more likely to be resistant. Bacteria can also become resistant through mutation of their genetic material.
I don't know if this help you at all.
Answer:
The cytochrome b6f is a large multi-subunit protein, which accepts electrons from the plastohydroquinone.
One electron moves linearly toward plastocyanin while the other goes through a cyclic process, which effectively pumps more protons into the thylakoid lumen.
Explanation:
The cytochrome b6f is distributed among both grana and stroma thylakoids equally. They are usually large and embedded in the membrane.
The immune system is the bodies defense against invaders and is located in all body tissues with concentration in the mucosal surfaces and skin.
Answer: Natural selection is one of the forces of evolution and the enviroment where the species lives is the selection agent. For example, suppose a mosquitoes population in a environment free from insecticides, in this environment there's a high frequency of non-resistant mosquitoes because the environment is not exerting any pressure on the resistence trait. But when the environment changes and we use a insecticide upon the mosquitoes population, the populations changes because the non-resistant ones die but those resistant survive and beggin to reproduce more effectively. That's natural selection, differences in survival and reproduction between individuals with different phenotypes (traits) and this differences depend of environmental changes.
The four phases of the menstrual cycle are menstruation, the follicular phase, ovulation, and the luteal phase. Common menstrual problems include heavy or painful periods and premenstrual syndrome (PMS). Knowing when in the menstrual cycle a woman is most likely to conceive can increase the chance of pregnancy.