1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kenny6666 [7]
3 years ago
13

Can anyone help me with this question?????????????????

Mathematics
1 answer:
zvonat [6]3 years ago
4 0

Answer: I think on the big arrow y=3 and on the small arrow x=2. I hope this helped. (3×15=45) and (2×12=24)

Step-by-step explanation:

You might be interested in
I need help and it’s due today
frez [133]

Answer:

5.63

Step-by-step explanation:

Angle NLM is equal to KLM - KLN.

Since KLM = 137° and KLN = 47°, NLM = °90. (Maybe it doesn't look like a right angle, but the math doesn't lie.)

Since NLM = 16y, then 90 = 16y.

Dividing both sides by 16, we find that:

y = 5.625

5 0
3 years ago
Read 2 more answers
Please prove this........​
Crazy boy [7]

Answer:  see proof below

<u>Step-by-step explanation:</u>

Given: A + B + C = π    →     C = π - (A + B)

                                    → sin C = sin(π - (A + B))       cos C = sin(π - (A + B))

                                    → sin C = sin (A + B)              cos C = - cos(A + B)

Use the following Sum to Product Identity:

sin A + sin B = 2 cos[(A + B)/2] · sin [(A - B)/2]

cos A + cos B = 2 cos[(A + B)/2] · cos [(A - B)/2]

Use the following Double Angle Identity:

sin 2A = 2 sin A · cos A

<u>Proof LHS → RHS</u>

LHS:                        (sin 2A + sin 2B) + sin 2C

\text{Sum to Product:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-\sin 2C

\text{Double Angle:}\qquad 2\sin\bigg(\dfrac{2A+2B}{2}\bigg)\cdot \cos \bigg(\dfrac{2A - 2B}{2}\bigg)-2\sin C\cdot \cos C

\text{Simplify:}\qquad \qquad 2\sin (A + B)\cdot \cos (A - B)-2\sin C\cdot \cos C

\text{Given:}\qquad \qquad \quad 2\sin C\cdot \cos (A - B)+2\sin C\cdot \cos (A+B)

\text{Factor:}\qquad \qquad \qquad 2\sin C\cdot [\cos (A-B)+\cos (A+B)]

\text{Sum to Product:}\qquad 2\sin C\cdot 2\cos A\cdot \cos B

\text{Simplify:}\qquad \qquad 4\cos A\cdot \cos B \cdot \sin C

LHS = RHS: 4 cos A · cos B · sin C = 4 cos A · cos B · sin C    \checkmark

7 0
3 years ago
You are analyzing the allele frequencies for fur color in a population of squirrels where black fur is dominant to red fur. As p
kvasek [131]

Answer:

0.784

Step-by-step explanation:

Given that you are  analyzing the allele frequencies for fur color in a population of squirrels where black fur is dominant to red fur.

As part of your research, you collect the following data:

Total individuals: 1,000

Red fur individuals: 216

So black fur individuals = 1000-216\\=784

p2 = proportion of black fur individuals to total individuals

= \frac{784}{1000} \\=0.784

4 0
3 years ago
Evaluate the integral from 0 to 1/2 of xcospixdx
aleksklad [387]
\bf \int\limits_{0}^{\frac{1}{2}}xcos(\underline{\pi x})\cdot dx\\&#10;-----------------------------\\&#10;u=\underline{\pi x}\implies \frac{du}{dx}=\pi \implies \frac{du}{\pi }=dx\\&#10;-----------------------------\\&#10;thus\implies \int\limits_{0}^{\frac{1}{2}}xcos(u)\cdot \cfrac{du}{\pi }&#10;\\\\&#10;\textit{wait a sec, we need the integrand in u-terms}\\&#10;\textit{what the dickens is up with that "x"?}\qquad well\\&#10;-----------------------------\\&#10;u=\pi x\implies \frac{u}{\pi }=x\\&#10;-----------------------------\\\bf thus&#10;\\\\&#10;\int\limits_{0}^{\frac{1}{2}}\cfrac{u}{\pi }cos(u)\cdot \cfrac{du}{\pi }\implies &#10;\int\limits_{0}^{\frac{1}{2}}\cfrac{u}{\pi }\cdot \cfrac{cos(u)}{\pi }\cdot du\implies &#10;\cfrac{u}{\pi^2}\int\limits_{0}^{\frac{1}{2}}cos(u)\cdot  du\\&#10;-----------------------------\\&#10;\textit{now, let us do the bounds}&#10;\\\\&#10;u\left( \frac{1}{2} \right)=\pi\left( \frac{1}{2} \right)\to \frac{\pi }{2}&#10;\\\\&#10;u\left( 0 \right)=\pi (0)\to 0\\&#10;-----------------------------\\\bf thus&#10;\\\\&#10;\cfrac{u}{\pi^2}\int\limits_{0}^{\frac{\pi }{2}}cos(u)\cdot  du\implies \cfrac{u}{\pi^2}\cdot sin(u)\implies \left[ \cfrac{u\cdot sin(u)}{\pi^2} \right]_{0}^{\frac{\pi }{2}}&#10;
5 0
3 years ago
WHATs 2 PLUS 2 plus 345555 minus 234 times 454
leonid [27]

Answer:

This can be solved using a calculator

239323

5 0
3 years ago
Read 2 more answers
Other questions:
  • Lena is going to cover her entire garden with topsoil. The garden is 36 feet long by 22 feet wide. A bag of topsoil costs $3 and
    10·1 answer
  • What is 2/5 multiplied by 1 1/2
    13·1 answer
  • In a circle, a 90 degree sector has area of 64pi ftsqd. what is the radius of the circle? ...?
    13·1 answer
  • A toy rocket is launched straight up from the top of a building. The function that models the height as a function of time is h(
    11·1 answer
  • 14x = -22 - 5y<br> 5x = 60 + 5y<br> Enta
    12·1 answer
  • performance determine the slope and the y-intercept given the following linear functions. 1.f(x)=3x-10​
    8·1 answer
  • Se deposita 4000 soles a una tasa de interés del 0,8% quincenas .¿Que interes producirá en cinco quincenas?
    12·1 answer
  • 25 7/5 tons = ib ......
    5·1 answer
  • A computer that was 2/3 of the original price the original price was 900$ what would be the sale price?
    9·2 answers
  • Given that 35.8 x 4.23= 151.434<br>write down a division sum with an answer of 423.​
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!