The equation gives the height of the ball. That is, h is the height of the ball. t is the time. Since we are looking for the time at which the height is 8 (h=8), we need to set the equation equal to 8 and solve for t. We do this as follows:




This is a quadratic equation and as it is set equal to 0 we can solve it using the quadratic formula. That formula is:

You might recall seeing this as "x=..." but since our equation is in terms of t we use "t-=..."
In order to use the formula we need to identify a, b and c.
a = the coefficient (number in front of)

= 16.
b = the coefficient of t = -60
c = the constant (the number that is by itself) = 7
Substituting these into the quadratic formula gives us:



As we have "plus minus" (this is usually written in symbols with a plus sign over a minus sign) we split the equation in two and obtain:

and

So the height is 8 feet at t = 3.63 and t=.12
It should make sense that there are two times. The ball goes up, reaches it's highest height and then comes back down. As such the height will be 8 at some point on the way up and also at some point on the way down.
Your scale model will be just under 3.135 inches x 1 inch even.
The answer is x=1. I showed my work in the screenshot provided
Answer: d. ∠u ≅ ∠v
Step-by-step explanation:
We know that when two triangles are congruent then their corresponding parts are congruent.
This property is known as CPCTC.
Given: triangle stu is congruent to triangle vwx
Thus, all corresponding sides are congruent
a.segment st ≅ segment vw and d. segment su ≅ segment vx , both are correct.
All corresponding angles are congruent,thus
∠s ≅ ∠v
∠t ≅ ∠w
∠u ≅ ∠x
Thus, d is the option which is not true.