Answer:
The atomic mass of X is 204.5 amu.
Explanation:
We know that metals react with oxygen forming a metallic oxide, according to the following equation:
4 X + O₂ ⇄ 2 X₂O
The oxide is formed just by <em>just</em> two elements, the metal and oxygen. The total mass of the oxide is 1.4158g and the mass of the metal in the oxide must be 1.3625g because of the Law of conservation of mass. Then, we can substract the mass of the metal to obtain the mass of oxygen.
mass O + mass X = mass X₂O
mass O = mass X₂O - mass X = 1.4158g - 1.3625g = 0.0533g
So, for every 0.0533g of oxygen there are 1.3625 g of the metal X. In the formula X₂O there is 1 mol of atoms of oxygen, which has a molar mass of 16 g/mol. We can use this data to find out the mass of the metal in the oxide.

Given in the formula there are 2 moles of atoms of X, the molar mass should be half of 409g, i.e., 204.5g/mol. If a mol of X has a mass of 204.5 g, an atom of X has a mass of 204.5 amu, according to its definition.
Answer:
the transfer of energy because eating is gaining energy from a source, so the energy from that source is being transfer to the animal.
Answer:
Amount of Ca(NO3)2 produced = 14.02 g
Explanation:
The given reaction can be depicted as follows:
Ca(OH)2 + 2HNO3 → Ca(NO3)2 + 2H2O
Since it is given that HNO3 is in excess, the limiting reactant is Ca(OH)2
Now, Mass of Ca(OH)2 = 6.33 g
Molar mass of Ca(OH)2 = 74 g/mol

Based on the reaction stoichiometry:
1 mole of Ca(OH)2 forms 1 mole of Ca(NO3)2
Therefore, moles of Ca(NO3)2 produced from the moles of Ca(OH)2 reacted = 0.0855 moles
Molar mass of Ca(NO3)2 = 164 g/mol

Answer:The answer is 4 and 5
Explanation:because my ahh guessed
The process of freezing occurs when B) water molecules slow down until they begin to form stronger bonds together. These stronger bonds eventually turn the water molecules into a solid formation.