Water is a polar solvent. Since, 'Like dissolves like' a polar compound will be most soluble in water whereas a non-polar compound will be the least soluble.
The increasing order of polarity for the given organic compounds is:-
CH3OCH3 < CH3NH2 < CH3CHO < CH3CH2OH
Ether is the least polar and hence least soluble in water.
In the first 85.0 s of this reaction, the concentration of no dropped from 1.12 m to 0.520 m .
What is rate of a reaction?
The speed at which a chemical reaction takes place is the rate of the reaction. It is the concentration change per unit time of a reactant in a reaction.
Since the concentration of NO reduces to half its initial concentration in 85 seconds that is from 1.12m to 0.520m, it can be said that 85 seconds is the half life interval for the reaction, <u>Hence on average, </u><u>half reaction</u><u> is completed in the time interval of </u><u>85 seconds</u><u>.</u>
To learn more about rate of a reaction from the given link below,
brainly.com/question/12172706
#SPJ4
false,
sodium has a vigorous reaction with water.
This can be observed by putting a piece of sodium in water,
it moves swiftly across the surface of water and reacts violently.
Answer:
The gas obeys Boyle’s law and the value of
both are equal to 40.0 atm L.
Explanation:
Initial volume of the gas = 
Initial pressure of the gas = 
Final volume of the gas = 
Final pressure of the gas = 
This law states that pressure is inversely proportional to the volume of the gas at constant temperature.

The equation given by this law is:








The gas in the cylinder is obeying Boyle's law.
The gas obeys Boyle’s law and the value of
both are equal to 40.0 atm L.
Answer:
kp= 3.1 x 10^(-2)
Explanation:
To solve this problem we have to write down the reaction and use the ICE table for pressures:
2SO2 + O2 ⇄ 2SO3
Initial 3.4 atm 1.3 atm 0 atm
Change -2x - x + 2x
Equilibrium 3.4 - 2x 1.3 -x 0.52 atm
In order to know the x value:
2x = 0.52
x=(0.52)/2= 0.26
2SO2 + O2 ⇄ 2SO3
Equilibrium 3.4 - 0.52 1.3 - 0.26 0.52 atm
Equilibrium 2.88 atm 1.04 atm 0.52 atm
with the partial pressure in the equilibrium, we can obtain Kp.
