Method 1: In order to find out the area of an octagon with a radius of 4 feet, we have to split the whole figure into 8 equal isosceles triangles.
Therefore,
We will find out the area of one triangle and multiply the area with 8 to, figure out the area of the whole octagon there are 8 similar triangles and all of them will have the same area.
Method 2: From method 1, it would take time as there are too much of calculation, therefore we would go for the shortcut using the formula:
Area = 2√2 × r²
where r<span> is the radius of the octagon.
Substituting the values,
We get:
</span>
Area = 2√2 × 4²
Area = 2√2 × 16
Area = 2× 1.41 × 16
Area = 2.828 × 16
Area = 45.25
Rounded to the nearest tenth:
Area = 45.3 ft²
Answer:
The answer would be 2012 and 2004
Step-by-step explanation:
when you round 30.346 to the nearest tenth it is 30.4 and when you round 30.406 to the nearest tenth then it is also 30.4.
Hope it helps!
:)
Answer:
Step-by-step explanation:
Be careful how you handle this.
f(-7) = 3(-7)^2
f(-7) = 3* 49 Notice the minus sign disappears. That's because there are 2 of them.
f(-7) = 147
3/4 of 120
=3/4*120
=360/4
=90
3/8 of 160
=3/8*160
=480/8
=60
![\bf f(x)=\cfrac{2x-3}{x+1}~\hspace{10em}g(x)=\cfrac{x+3}{2-x} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ f(~~g(x)~~)\implies \cfrac{2[g(x)]-3}{[g(x)]+1}\implies \cfrac{2\left( \frac{x+3}{2-x} \right)-3}{\left( \frac{x+3}{2-x} \right)+1}\implies \cfrac{\frac{2x+6}{2-x}-3}{\frac{x+3}{2-x}+1} \\\\\\ \cfrac{\frac{2x+6-6+3x}{2-x}}{\frac{x+3+2-x}{2-x}}\implies \cfrac{2x+6-6+3x}{2-x}\cdot \cfrac{2-x}{x+3+2-x}\implies \cfrac{5x}{5}\implies x](https://tex.z-dn.net/?f=%5Cbf%20f%28x%29%3D%5Ccfrac%7B2x-3%7D%7Bx%2B1%7D~%5Chspace%7B10em%7Dg%28x%29%3D%5Ccfrac%7Bx%2B3%7D%7B2-x%7D%0A%5C%5C%5C%5C%5B-0.35em%5D%0A%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0Af%28~~g%28x%29~~%29%5Cimplies%20%5Ccfrac%7B2%5Bg%28x%29%5D-3%7D%7B%5Bg%28x%29%5D%2B1%7D%5Cimplies%20%5Ccfrac%7B2%5Cleft%28%20%5Cfrac%7Bx%2B3%7D%7B2-x%7D%20%5Cright%29-3%7D%7B%5Cleft%28%20%5Cfrac%7Bx%2B3%7D%7B2-x%7D%20%5Cright%29%2B1%7D%5Cimplies%0A%5Ccfrac%7B%5Cfrac%7B2x%2B6%7D%7B2-x%7D-3%7D%7B%5Cfrac%7Bx%2B3%7D%7B2-x%7D%2B1%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B%5Cfrac%7B2x%2B6-6%2B3x%7D%7B2-x%7D%7D%7B%5Cfrac%7Bx%2B3%2B2-x%7D%7B2-x%7D%7D%5Cimplies%20%5Ccfrac%7B2x%2B6-6%2B3x%7D%7B2-x%7D%5Ccdot%20%5Ccfrac%7B2-x%7D%7Bx%2B3%2B2-x%7D%5Cimplies%20%5Ccfrac%7B5x%7D%7B5%7D%5Cimplies%20x)
![\bf \rule{34em}{0.25pt}\\\\ g(~~f(x)~~)\implies \cfrac{[f(x)]+3}{2-[f(x)]}\implies \cfrac{\frac{2x-3}{x+1}+3}{2-\frac{2x-3}{x+1}}\implies \cfrac{\frac{2x-3+3x+3}{x+1}}{\frac{2x+2-(2x-3)}{x+1}} \\\\\\ \cfrac{2x-3+3x+3}{x+1}\cdot \cfrac{x+1}{2x+2-(2x-3)}\implies \cfrac{2x-3+3x+3}{x+1}\cdot \cfrac{x+1}{2x+2-2x+3} \\\\\\ \cfrac{5x}{5}\implies x](https://tex.z-dn.net/?f=%5Cbf%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%0Ag%28~~f%28x%29~~%29%5Cimplies%20%5Ccfrac%7B%5Bf%28x%29%5D%2B3%7D%7B2-%5Bf%28x%29%5D%7D%5Cimplies%20%5Ccfrac%7B%5Cfrac%7B2x-3%7D%7Bx%2B1%7D%2B3%7D%7B2-%5Cfrac%7B2x-3%7D%7Bx%2B1%7D%7D%5Cimplies%20%5Ccfrac%7B%5Cfrac%7B2x-3%2B3x%2B3%7D%7Bx%2B1%7D%7D%7B%5Cfrac%7B2x%2B2-%282x-3%29%7D%7Bx%2B1%7D%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B2x-3%2B3x%2B3%7D%7Bx%2B1%7D%5Ccdot%20%5Ccfrac%7Bx%2B1%7D%7B2x%2B2-%282x-3%29%7D%5Cimplies%20%5Ccfrac%7B2x-3%2B3x%2B3%7D%7Bx%2B1%7D%5Ccdot%20%5Ccfrac%7Bx%2B1%7D%7B2x%2B2-2x%2B3%7D%0A%5C%5C%5C%5C%5C%5C%0A%5Ccfrac%7B5x%7D%7B5%7D%5Cimplies%20x)
and in case you recall your inverses, when f( g(x) ) = x, or g( f(x) ) = x, simply means, they're inverse of each other.