Answer:
Step-by-step explanation:
9
1. ∠ACB ≅∠ECD ; vertical angles are congruent (A)
2. C is midpoint of AE ; given
3. AC ≅CE; midpoint divides the line segment in 2 congruent segments (S)
4.AB║DE; given
5. ∠A≅∠E; alternate interior angles are congruent (A)
6. ΔABC≅ΔEDC; Angle-Side-Angle congruency theorem
10
1. YX≅ZX; given (S)
2. WX bisects ∠YXZ; given
3. ∠YXW≅∠ZXW; definition of angle bisectors (A)
4. WX ≅WX; reflexive propriety(S)
5. ΔWYX≅ΔWZX; Side-Angle-Side theorem
If a function is defined as

where both
are continuous functions, then
is also continuous where defined, i.e. where 
So, in your case, this function is continous everywhere, except where

To solve this equation, we can use the formula 
It means that, if the leading terms is 1, then the x coefficient is the opposite of the sum of the roots, and the constant term is the product of the roots.
So, we're looking for two terms whose sum is 7, and whose product is 12. These numbers are easily found to be 3 and 4.
So, this function is continuous for every real number different than 3 or 4.
Answer:
it’s A it is not given the ST and DE are parallel
Step-by-step explanation:
It says that b represents Becky’s score and c represents Cathy’s score.
Becky’s score was 5 less than Cathy’s score, its equation can be written as :-
b = c - 5
It says that their combined score totaled 185, its equation can be written as :-
b + c = 185
So, correct pair of equations is b = c - 5 and b + c = 185.
Hi there!
Assuming a perfect square: we know there are 4 sides in a square, and all of them have equal length. This means that every side of the square is 6 cm, and with 4 sides, that would make an overall length / perimeter of 6 + 6 + 6 + 6, or 6*4, which would equal 24 cm. This means that our wire must be 24 cm long.
Now, for the rectangle. We know with rectangles that they also have 4 sides, and in pairs of 2 in terms of length (2 of the sides have the same length, and the other two have the same length). This means we know there are 2 sides that are 9 cm, which would mean 18 cm in total. This is the total amount of wire taken up by the length, but we are looking for the width. Thus, we can see how much wire is leftover not taken up by the length by subtracting 18 from 24:
24-18=6
Now, we see that the two sides that make up the width are 6 cm long. As those two sides are equal length, we can divide 6 cm into two equal parts to see the width.
6/2 = 3 cm.
Thus, the width of the rectangle is 3 cm.
Hope this helps!