Answer:
52 cards:
26 red and 26 black
P(R) = probability of picking a red card
P(B) = probability of picking a black card
P(R) = P(B) = ¹/₂
If with replacement:
P(R∩B) = (¹/₂)(¹/₂) = ¹/₄
If without replacement:
P(R∩B) = (¹/₂)(²⁶/₅₁) = ¹³/₅₁
8 Balls:
3 red and 5 white
P(R) = probability of picking a red ball
P(W) = probability of picking a white ball
P(R) = ³/₈
P(W) = ⁵/₈
If with replacement:
P(R∩W) ∪ P(W∩R) = (³/₈)(⁵/₈) + (⁵/₈)(³/₈)
= ¹⁵/₆₄ + ¹⁵/₆₄
= ³⁰/₆₄
= ¹⁵/₃₂
If without replacement:
P(R∩W) ∪ P(W∩R) = (³/₈)(⁵/₇) + (⁵/₈)(³/₇)
= ¹⁵/₄₂ + ¹⁵/₄₂
= ³⁰/₄₂
= ⁵/₇
There are a couple of ways to tackle this one, using the 45-45-90 rule or just using the pythagorean theore, let's use the pythagorean theorem.
the angle at A is 45°, and its opposite side is BC, the angle at C is 45° as well, and its opposite side is AB, well, the angles are the same, thus BC = AB.
hmmm le'ts call hmmm ohh hmmm say z, thus BC = AB = z.
Answer:
83/13 or 6.3846
Step-by-step explanation:
i subsituted for x and used a calculator
This is a quadratic equation, which is also a polynomial. Polynomials all have the domain (-infinity, +infinity).
As for the range: You can see from the graph that the smallest y-value is -2. Thus, the range is [-2, infinity).
Area abc def cuase its 126-72+28=82 so abc def