By applying the concept of the inverse of a function and <em>algebraic</em> handling, we conclude that the inverse of f(x) = (- 2 · x + 2)/(x + 7) is g(x) = (- 7 · x + 2)/(x + 2).
<h3>How to find the inverse of a function</h3>
In this question we have a <em>rational</em> function f(x) and finding its inverse consists in clearing x in terms of f(x). Prior any algebraic handling, we need to apply the following substitutions:



x · (y + 7) = - 2 · y + 2
x · y + 7 · x = - 2 · y + 2
2 · y + x · y = - 7 · x + 2
y · (2 + x) = - 7 · x + 2

By applying the concept of the inverse of a function and <em>algebraic</em> handling, we conclude that the inverse of f(x) = (- 2 · x + 2)/(x + 7) is g(x) = (- 7 · x + 2)/(x + 2).
To learn more on inverses: brainly.com/question/7181576
#SPJ1
Answer:
Q3: x1=2+i, x2=2-i Q4: x1=-3/2+i, x2=-3/2-i
Step-by-step explanation:

(
±
) /
= (
x1= 2+i
x2= 2-i

(
±
) /
= (-6 ±
)/4= (-3 ± i)/2
x1 = -3/2 +i
x2 = -3/2 -i
D) Definition of Equilateral Triangle
e) Vertical Angles
f1) ΔTVS <span>≅ </span>ΔUVR
f2) Side Angle Side Postulate
g) Definition of Congruent Triangles
Hope that helps!
Answer:
99
Step-by-step explanation:
U will do the one outside first
122+1-4(6)
=123-24
= 99
Answer:
x-y=4
and
x+y=32 is <u>your</u><u> </u><u>equation</u>
<u>d</u><u>i</u><u>f</u><u>f</u><u>e</u><u>r</u><u>e</u><u>n</u><u>c</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>w</u><u>o</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u> </u><u>=</u><u>x-y</u><u> </u><u>is</u><u> </u><u>equal</u><u> </u><u>to</u><u> </u><u>4</u>
<u>s</u><u>u</u><u>m</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>w</u><u>o</u><u> </u><u>n</u><u>u</u><u>m</u><u>b</u><u>e</u><u>r</u><u>=</u><u>x</u><u>+</u><u>y</u><u> </u><u>i</u><u>s</u><u> </u><u>e</u><u>q</u><u>u</u><u>a</u><u>l</u><u> </u><u>t</u><u>o</u><u> </u><u>3</u><u>2</u>
<u>x</u><u>-</u><u>y</u><u>=</u><u>4</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>(</u><u>1</u><u>)</u>
<u>x</u><u>+</u><u>y</u><u>=</u><u>3</u><u>2</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>(</u><u>2</u><u>)</u>
<u>a</u><u>d</u><u>d</u><u>i</u><u>n</u><u>g</u><u> </u><u>equation</u><u> </u><u>1</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>2</u>
<u>x</u><u>-</u><u>y</u><u> </u><u>+</u><u>x</u><u>+</u><u>y</u><u>=</u><u>4</u><u>+</u><u>3</u><u>2</u>
<u>2</u><u>x</u><u>=</u><u>3</u><u>6</u>
<u>x</u><u>=</u><u>3</u><u>6</u><u>/</u><u>2</u><u>=</u><u>1</u><u>6</u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>
<u>s</u><u>u</u><u>b</u><u>s</u><u>t</u><u>i</u><u>t</u><u>u</u><u>t</u><u>i</u><u>n</u><u>g</u><u> </u><u>value</u><u> </u><u>of</u><u> </u><u>y</u><u> </u><u>in</u><u> </u><u>equation</u><u> </u><u>1</u>
<u>1</u><u>6</u><u>-</u><u>y</u><u>=</u><u>4</u>
<u>1</u><u>6</u><u>-</u><u>4</u><u>=</u><u>y</u>
<u>y</u><u>=</u><u>1</u><u>2</u><u> </u><u>a</u><u>n</u><u>s</u><u>w</u><u>e</u><u>r</u>