Answer:
3.5 atm
Explanation:
As stated in the question pressure is required to counteract the natural tendency for water to dilute the more concentrated solution. The difference in concentrations will give us the answer using the osmotic pressure equation.
π = ( n/v) RT where n/v is the molarity (mol/L), R is the gas constant and T is the temperature.
The difference in osmotic pressure of the solutions is:
Δπ = Δ c RT where c is the difference in molar concentrations.
pressure required = Δπ = (0.190 - 0.048) M x 0.821 Latm/Kmol x 298 K
= 3.47 atm
Answer:
the uses of exothermic reactions are:
1) lighting of stove
2) self heating cans
3) hand warmers
4) in some case exothermic process can be used to cook food such as rice (by adding calcium oxide to water heat is evolved and it helps to cook food )
Explanation:
hope this helps you pls mark me as brainilst
E = mc^2
E = 8.90 * 10^12 Joules
c = 3 * 10^8 m/s
m = ????
8.90 * 10^12 = m * (3 * 10^8)^2
8.90 * 10^12 = m * 9 * 10^16
9.889 * 10^-4 kg = m <<<<< answer
The question is incomplete. The complete question is :
A common "rule of thumb" for many reactions around room temperature is that the rate will double for each ten degree increase in temperature. Does the reaction you have studied seem to obey this rule? (Hint: Use your activation energy to calculate the ratio of rate constants at 300 and 310 Kelvin.)
Solutions :
If we consider the activation energy to be constant for the increase in 10 K temperature. (i.e. 300 K → 310 K), then the rate of the reaction will increase. This happens because of the change in the rate constant that leads to the change in overall rate of reaction.
Let's take :


The rate constant =
respectively.
The activation energy and the Arhenius factor is same.
So by the arhenius equation,
and 




Given,
J/mol
R = 8.314 J/mol/K





∴ 
So, no this reaction does not seem to follow the thumb rule as its activation energy is very low.
5. 1 hydrogen, 1 Nitrogen, 3 oxygen