For proof of 3 divisibility, abc is a divisible by 3 if the sum of abc (a + b + c) is a multiple of 3.
<h3>
Integers divisible by 3</h3>
The proof for divisibility of 3 implies that an integer is divisible by 3 if the sum of the digits is a multiple of 3.
<h3>Proof for the divisibility</h3>
111 = 1 + 1 + 1 = 3 (the sum is multiple of 3 = 3 x 1) (111/3 = 37)
222 = 2 + 2 + 2 = 6 (the sum is multiple of 3 = 3 x 2) (222/3 = 74)
213 = 2 + 1 + 3 = 6 ( (the sum is multiple of 3 = 3 x 2) (213/3 = 71)
27 = 2 + 7 = 9 (the sum is multiple of 3 = 3 x 3) (27/3 = 9)
Thus, abc is a divisible by 3 if the sum of abc (a + b + c) is a multiple of 3.
Learn more about divisibility here: brainly.com/question/9462805
#SPJ1
The starting percent is 100%. After one hour, bacteria tripled, so it is 300%.
Answer:
A. 15
Step-by-step explanation:
Width (w): 5
Height (h): 6
Area of Triangle (A) = 1/2wh
A = 1/2(5)(6)
A = 5 x 3
A = 15 units squared
Hope this helped! <3
Answer:
(7+Z)²
Step-by-step explanation:
A less ambiguous way to describe the quantity might be "the square of the quantity seven plus Z".
As it is, we rely on the presence of the comma to tell us that the quantity to be squared is (7+Z). If the comma were not present, we would assume you want to add 7 to the square of Z: 7+Z².
the quantity 7 plus Z: (7+Z)
that quantity squared: (7+Z)²
It cant be converted into a mixed number because it has no whole.