As the ladder is pulled away from the wall, the area and the height with the
wall are decreasing while the angle formed with the wall increases.
The correct response are;
- (a) The velocity of the top of the ladder = <u>1.5 m/s downwards</u>
<u />
- (b) The rate the area formed by the ladder is changing is approximately <u>-75.29 ft.²/sec</u>
<u />
- (c) The rate at which the angle formed with the wall is changing is approximately <u>0.286 rad/sec</u>.
Reasons:
The given parameter are;
Length of the ladder, <em>l</em> = 25 feet
Rate at which the base of the ladder is pulled,
= 2 feet per second
(a) Let <em>y</em> represent the height of the ladder on the wall, by chain rule of differentiation, we have;
![\displaystyle \frac{dy}{dt} = \mathbf{\frac{dy}{dx} \times \frac{dx}{dt}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%5Cmathbf%7B%5Cfrac%7Bdy%7D%7Bdx%7D%20%5Ctimes%20%5Cfrac%7Bdx%7D%7Bdt%7D%7D)
25² = x² + y²
y = √(25² - x²)
![\displaystyle \frac{dy}{dx} = \frac{d}{dx} \sqrt{25^2 - x^2} = \frac{x \cdot \sqrt{625-x^2} }{x^2- 625}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Csqrt%7B25%5E2%20-%20x%5E2%7D%20%3D%20%5Cfrac%7Bx%20%5Ccdot%20%5Csqrt%7B625-x%5E2%7D%20%20%7D%7Bx%5E2-%20625%7D)
Which gives;
![\displaystyle \frac{dy}{dt} = \frac{x \cdot \sqrt{625-x^2} }{x^2- 625}\times \frac{dx}{dt} = \frac{x \cdot \sqrt{625-x^2} }{x^2- 625}\times2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%5Cfrac%7Bx%20%5Ccdot%20%5Csqrt%7B625-x%5E2%7D%20%20%7D%7Bx%5E2-%20625%7D%5Ctimes%20%5Cfrac%7Bdx%7D%7Bdt%7D%20%3D%20%20%5Cfrac%7Bx%20%5Ccdot%20%5Csqrt%7B625-x%5E2%7D%20%20%7D%7Bx%5E2-%20625%7D%5Ctimes2)
![\displaystyle \frac{dy}{dt} = \mathbf{ \frac{x \cdot \sqrt{625-x^2} }{x^2- 625}\times2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%20%5Cmathbf%7B%20%5Cfrac%7Bx%20%5Ccdot%20%5Csqrt%7B625-x%5E2%7D%20%20%7D%7Bx%5E2-%20625%7D%5Ctimes2%7D)
When x = 15, we get;
![\displaystyle \frac{dy}{dt} = \frac{15 \times \sqrt{625-15^2} }{15^2- 625}\times2 = \mathbf{-1.5}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%20%20%5Cfrac%7B15%20%5Ctimes%20%5Csqrt%7B625-15%5E2%7D%20%20%7D%7B15%5E2-%20625%7D%5Ctimes2%20%3D%20%5Cmathbf%7B-1.5%7D)
The velocity of the top of the ladder = <u>1.5 m/s downwards</u>
When x = 20, we get;
![\displaystyle \frac{dy}{dt} = \frac{20 \times \sqrt{625-20^2} }{20^2- 625}\times2 = -\frac{8}{3} = -2.\overline 6](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%20%20%5Cfrac%7B20%20%5Ctimes%20%5Csqrt%7B625-20%5E2%7D%20%20%7D%7B20%5E2-%20625%7D%5Ctimes2%20%3D%20-%5Cfrac%7B8%7D%7B3%7D%20%3D%20-2.%5Coverline%206)
The velocity of the top of the ladder =
When x = 24, we get;
![\displaystyle \frac{dy}{dt} = \frac{24 \times \sqrt{625-24^2} }{24^2- 625}\times2 = \mathbf{-\frac{48}{7}} \approx -6.86](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bdy%7D%7Bdt%7D%20%3D%20%20%20%5Cfrac%7B24%20%5Ctimes%20%5Csqrt%7B625-24%5E2%7D%20%20%7D%7B24%5E2-%20625%7D%5Ctimes2%20%3D%20%5Cmathbf%7B-%5Cfrac%7B48%7D%7B7%7D%7D%20%20%5Capprox%20-6.86)
The velocity of the top of the ladder ≈ <u>-6.86 m/s downwards</u>
(b) ![\displaystyle The \ area\ of \ the \ triangle, \ A =\mathbf{\frac{1}{2} \cdot x \cdot y}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20The%20%5C%20area%5C%20of%20%5C%20the%20%5C%20triangle%2C%20%5C%20A%20%3D%5Cmathbf%7B%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20x%20%5Ccdot%20y%7D)
Therefore;
![\displaystyle The \ area\ A =\frac{1}{2} \cdot x \cdot \sqrt{25^2 - x^2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20The%20%5C%20area%5C%20A%20%3D%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20x%20%5Ccdot%20%5Csqrt%7B25%5E2%20-%20x%5E2%7D)
![\displaystyle \frac{dA}{dx} = \frac{d}{dx} \left (\frac{1}{2} \cdot x \cdot \sqrt{25^2 - x^2}\right) = \mathbf{\frac{(2 \cdot x^2- 625)\cdot \sqrt{625-x^2} }{2\cdot x^2 - 1250}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7BdA%7D%7Bdx%7D%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cleft%20%28%5Cfrac%7B1%7D%7B2%7D%20%5Ccdot%20x%20%5Ccdot%20%5Csqrt%7B25%5E2%20-%20x%5E2%7D%5Cright%29%20%3D%20%5Cmathbf%7B%5Cfrac%7B%282%20%5Ccdot%20x%5E2-%20625%29%5Ccdot%20%5Csqrt%7B625-x%5E2%7D%20%7D%7B2%5Ccdot%20x%5E2%20-%201250%7D%7D)
![\displaystyle \frac{dA}{dt} = \mathbf{ \frac{dA}{dx} \times \frac{dx}{dt}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7BdA%7D%7Bdt%7D%20%3D%20%5Cmathbf%7B%20%5Cfrac%7BdA%7D%7Bdx%7D%20%5Ctimes%20%5Cfrac%7Bdx%7D%7Bdt%7D%7D)
Therefore;
![\displaystyle \frac{dA}{dt} = \frac{(2 \cdot x^2- 625)\cdot \sqrt{625-x^2} }{2\cdot x^2 - 1250} \times 2](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7BdA%7D%7Bdt%7D%20%3D%20%20%5Cfrac%7B%282%20%5Ccdot%20x%5E2-%20625%29%5Ccdot%20%5Csqrt%7B625-x%5E2%7D%20%7D%7B2%5Ccdot%20x%5E2%20-%201250%7D%20%5Ctimes%202)
When the ladder is 24 feet from the wall, we have;
x = 24
![\displaystyle \frac{dA}{dt} = \frac{(2 \times 24^2- 625)\cdot \sqrt{625-24^2} }{2\times 24^2 - 1250} \times 2 \approx \mathbf{ -75.29}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7BdA%7D%7Bdt%7D%20%3D%20%20%5Cfrac%7B%282%20%5Ctimes%2024%5E2-%20625%29%5Ccdot%20%5Csqrt%7B625-24%5E2%7D%20%7D%7B2%5Ctimes%2024%5E2%20-%201250%7D%20%5Ctimes%202%20%5Capprox%20%5Cmathbf%7B%20-75.29%7D)
The rate the area formed by the ladder is changing,
≈ <u>-75.29 ft.²/sec</u>
(c) From trigonometric ratios, we have;
![\displaystyle sin(\theta) = \frac{x}{25}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20sin%28%5Ctheta%29%20%3D%20%5Cfrac%7Bx%7D%7B25%7D)
![\displaystyle \theta = \mathbf{arcsin \left(\frac{x}{25} \right)}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Ctheta%20%3D%20%5Cmathbf%7Barcsin%20%5Cleft%28%5Cfrac%7Bx%7D%7B25%7D%20%5Cright%29%7D)
![\displaystyle \frac{d \theta}{dt} = \frac{d \theta}{dx} \times \frac{dx}{dt}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%20%5Ctheta%7D%7Bdt%7D%20%20%3D%20%5Cfrac%7Bd%20%5Ctheta%7D%7Bdx%7D%20%5Ctimes%20%5Cfrac%7Bdx%7D%7Bdt%7D)
![\displaystyle\frac{d \theta}{dx} = \frac{d}{dx} \left(arcsin \left(\frac{x}{25} \right) \right) = \mathbf{ -\frac{\sqrt{625-x^2} }{x^2 - 625}}](https://tex.z-dn.net/?f=%5Cdisplaystyle%5Cfrac%7Bd%20%5Ctheta%7D%7Bdx%7D%20%20%3D%20%5Cfrac%7Bd%7D%7Bdx%7D%20%5Cleft%28arcsin%20%5Cleft%28%5Cfrac%7Bx%7D%7B25%7D%20%5Cright%29%20%5Cright%29%20%3D%20%5Cmathbf%7B%20-%5Cfrac%7B%5Csqrt%7B625-x%5E2%7D%20%7D%7Bx%5E2%20-%20625%7D%7D)
Which gives;
![\displaystyle \frac{d \theta}{dt} = -\frac{\sqrt{625-x^2} }{x^2 - 625}\times \frac{dx}{dt}= \mathbf{ -\frac{\sqrt{625-x^2} }{x^2 - 625} \times 2}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%20%5Ctheta%7D%7Bdt%7D%20%20%3D%20%20-%5Cfrac%7B%5Csqrt%7B625-x%5E2%7D%20%7D%7Bx%5E2%20-%20625%7D%5Ctimes%20%5Cfrac%7Bdx%7D%7Bdt%7D%3D%20%5Cmathbf%7B%20-%5Cfrac%7B%5Csqrt%7B625-x%5E2%7D%20%7D%7Bx%5E2%20-%20625%7D%20%5Ctimes%202%7D)
When x = 24 feet, we have;
![\displaystyle \frac{d \theta}{dt} = -\frac{\sqrt{625-24^2} }{24^2 - 625} \times 2 \approx \mathbf{ 0.286}](https://tex.z-dn.net/?f=%5Cdisplaystyle%20%5Cfrac%7Bd%20%5Ctheta%7D%7Bdt%7D%20%3D%20%20-%5Cfrac%7B%5Csqrt%7B625-24%5E2%7D%20%7D%7B24%5E2%20-%20625%7D%20%5Ctimes%202%20%5Capprox%20%5Cmathbf%7B%200.286%7D)
Rate at which the angle between the ladder and the wall of the house is changing when the base of the ladder is 24 feet from the wall is
≈ <u>0.286 rad/sec</u>
Learn more about the chain rule of differentiation here:
brainly.com/question/20433457