Answer:
Point slope is ( Y+4) = 1/2(x+3)
Slope intercept is Y = 1/2(x) -5/2
Step-by-step explanation:
For the point slope form.
Given the point as (-3,-4)
And the gradient m = 1/2
Point slope form is
(Y - y1) = m(x-x1)
So
X1 = -3
Y1 = -4
(Y - y1) = m(x-x1)
(Y - (-4)) = 1/2(x -(-3))
( Y+4) = 1/2(x+3)
For the slopes intercept form
Y = mx + c
We can continue from where the point slope form stopped.
( Y+4) = 1/2(x+3)
2(y+4)= x+3
2y + 8 = x+3
2y = x+3-8
2y = x-5
Y = x/2 - 5/2
Y = 1/2(x) -5/2
Where -5/2 = c
1/2 = m
Answer:
The probability that on any given day the water supply is inadequate 
Step-by-step explanation:
Given
α = 2 and β = 3
As per Gamma distribution Function

Expanding the function and putting the given values, we get -
![[tex]1 - \int\limits^9_0 {f(x;2,3)} \, dx \\1- \int\limits^0_0 {\frac{1}{9}xe^{\frac{-x}{3} } \, dx\\\\= 1- \frac{1}{9} [x(-3e^{\frac{-x}{3}}) -\int\limits {(-3e^{\frac{-x}{3}})} \, dx]^9_0= 1- 1/9 [x(-3e^{\frac{-x}{3}}) -9e^{\frac{-x}{3}})} \, dx]^9_0\\1-((\frac{-1}{3} *9*e^({\frac{-9}{3}})- e^(\frac{-9}{3}))- ((\frac{-1}{3} *0*e^(\frac{-9}{3})-e^{\frac{-0}{3}})\\1-((-3e^{\frac{-9}{3} }-e^{\frac{-9}{3}}-(0-1))\\1-(1-4e^{-3})\\1-(1-0.1991)\\1-0.8009\\0.1991](https://tex.z-dn.net/?f=%5Btex%5D1%20-%20%5Cint%5Climits%5E9_0%20%7Bf%28x%3B2%2C3%29%7D%20%5C%2C%20dx%20%5C%5C1-%20%5Cint%5Climits%5E0_0%20%7B%5Cfrac%7B1%7D%7B9%7Dxe%5E%7B%5Cfrac%7B-x%7D%7B3%7D%20%7D%20%5C%2C%20dx%5C%5C%5C%5C%3D%201-%20%5Cfrac%7B1%7D%7B9%7D%20%5Bx%28-3e%5E%7B%5Cfrac%7B-x%7D%7B3%7D%7D%29%20-%5Cint%5Climits%20%7B%28-3e%5E%7B%5Cfrac%7B-x%7D%7B3%7D%7D%29%7D%20%5C%2C%20dx%5D%5E9_0%3D%201-%201%2F9%20%5Bx%28-3e%5E%7B%5Cfrac%7B-x%7D%7B3%7D%7D%29%20-9e%5E%7B%5Cfrac%7B-x%7D%7B3%7D%7D%29%7D%20%5C%2C%20dx%5D%5E9_0%5C%5C1-%28%28%5Cfrac%7B-1%7D%7B3%7D%20%2A9%2Ae%5E%28%7B%5Cfrac%7B-9%7D%7B3%7D%7D%29-%20e%5E%28%5Cfrac%7B-9%7D%7B3%7D%29%29-%20%28%28%5Cfrac%7B-1%7D%7B3%7D%20%2A0%2Ae%5E%28%5Cfrac%7B-9%7D%7B3%7D%29-e%5E%7B%5Cfrac%7B-0%7D%7B3%7D%7D%29%5C%5C1-%28%28-3e%5E%7B%5Cfrac%7B-9%7D%7B3%7D%20%7D-e%5E%7B%5Cfrac%7B-9%7D%7B3%7D%7D-%280-1%29%29%5C%5C1-%281-4e%5E%7B-3%7D%29%5C%5C1-%281-0.1991%29%5C%5C1-0.8009%5C%5C0.1991)
The probability that on any given day the water supply is inadequate 
Answer:
E) 1
Step-by-step explanation:
this is when both functions have the same value