Watson and Crick's model explained mutability because bases pairs can suffer changes (mutations) during DNA replication. Moreover, this model also explained stability because DNA strands are held together by hydrogen bonds.
Deoxyribonucleic acid (DNA) is a double helix molecule composed of two long chains of four types of nucleotides, each containing one different nitrogenous base, i.e., Adenine, Guanine, Cytosine and Thymine.
In Watson and Crick's model, both DNA strands are held together by hydrogen bonds between nitrogenous bases on opposite DNA strands, thereby providing stability to the DNA molecule.
In DNA, Guanine always pairs with Cytosine by three hydrogen bonds, while Adenine always pairs with Thymine by two hydrogen bonds.
Moreover, Watson and Crick suggested that mutations could occur as a consequence of a base occurring very infrequently in one of the less likely tautomeric forms during DNA replication, thereby also explaining the mutability of life.
Learn more in:
brainly.com/question/762661
Deepwater currents in the ocean form near the bottom of the ocean and are caused mainly by differences in the density of the water. These density changes are due to the amount of salt and temperature of the water.
A. Photosynthesis converts light energy into glucose, whose bonds have to be broken down in order to access the energy.
Answer:
Cell provide structure and support to the body of an organisms