Answer:
the answer is 9.7×10 to the fourth power
Step-by-step explanation:
Answer:
Sonya watched
1
3
of a movie in the morning, and she watched some more at night. By the end of the day, she still had
1
4
of the movie left to watch. How much of the movie did Sonya watch at night?
Step-by-step explanation:
SORRY WRONG
Answer:
a. z-score for the number of sags for this transformer is ≈ 1.57 . The number of sags found in this transformer is within the highest 6% of the number of sags found in the transformers.
b. z-score for the number of swells for this transformer is ≈ -3.36. The number of swells found in the transformer is extremely low and within the lowest 1%
Step-by-step explanation:
z score of sags and swells of a randomly selected transformer can be calculated using the equation
z=
where
- X is the number of sags/swells found
- M is the mean number of sags/swells
- s is the standard deviation
z-score for the number of sags for this transformer is:
z=
≈ 1.57
the number of sags found in the transformer is within the highest 6% of the number of sags found in the transformers.
z-score for the number of swells for this transformer is:
z=
≈ -3.36
the number of swells found in the transformer is extremely low and within the lowest 1%
Answer:
i think you multiple the measure
Answer:
82.31% of women have red blood cell counts in the normal range from 4.2 to 5.4 million cells per microliter
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

Approximately what percentage of women have red blood cell counts in the normal range from 4.2 to 5.4 million cells per microliter?
This is the pvalue of Z when X = 5.4 subtracted by the pvalue of Z when X = 4.2. So
X = 5.4



has a pvalue of 0.9842
X = 4.2



has a pvalue of 0.1611
0.9842 - 0.1611 = 0.8231
82.31% of women have red blood cell counts in the normal range from 4.2 to 5.4 million cells per microliter