Answer:
A. A tennis tournament in which after each round, half the players are eliminated.
Step-by-step explanation:
Answer:
Option 2 - Approximately 24–36 pounds
Step-by-step explanation:
Given : A standard American Eskimo dog has a mean weight of 30 pounds with a standard deviation of 2 pounds. Assuming the weights of standard Eskimo dogs are normally distributed.
To find : What range of weights would 99.7% of the dogs have?
Solution :
The range of 99.7% will lie between the mean ± 3 standard deviations.
We have given,
Mean weight of Eskimo dogs is
Standard deviation of Eskimo dogs is
The range of weights would 99.7% of the dogs have,





Therefore, The range is approximately, 24 - 36 pounds.
So, Option 2 is correct.
Well, we could try adding up odd numbers, and look to see when we reach 400. But I'm hoping to find an easier way.
First of all ... I'm not sure this will help, but let's stop and notice it anyway ...
An odd number of odd numbers (like 1, 3, 5) add up to an odd number, but
an even number of odd numbers (like 1,3,5,7) add up to an even number.
So if the sum is going to be exactly 400, then there will have to be an even
number of items in the set.
Now, let's put down an even number of odd numbers to work with,and see
what we can notice about them:
1, 3, 5, 7, 9, 11, 13, 15 .
Number of items in the set . . . 8
Sum of all the items in the set . . . 64
Hmmm. That's interesting. 64 happens to be the square of 8 .
Do you think that might be all there is to it ?
Let's check it out:
Even-numbered lists of odd numbers:
1, 3 Items = 2, Sum = 4
1, 3, 5, 7 Items = 4, Sum = 16
1, 3, 5, 7, 9, 11 Items = 6, Sum = 36
1, 3, 5, 7, 9, 11, 13, 15 . . Items = 8, Sum = 64 .
Amazing ! The sum is always the square of the number of items in the set !
For a sum of 400 ... which just happens to be the square of 20,
we just need the <em><u>first 20 consecutive odd numbers</u></em>.
I slogged through it on my calculator, and it's true.
I never knew this before. It seems to be something valuable
to keep in my tool-box (and cherish always).