A. Divide both sides by 4
You want to get the value of x not 4x so in order to do that u can have divide both sides by 4 to get x alone on one side.
Answer: Circle.
Depending on the angle and the place of intersection, when a plane intersects a cube, the sections created may be a square, a pentagon, a trapezoid, a triangle or a rectangle (even you can obtain an octagon), but you will never get a circle.
People with kids or babies always want them to eat natural foods with no preservation, even if are a bit more expensive than the other available options.What they care about is the quality and health of the kids.So keeping this point in head,most of the brands uses the technique to compete with the other in-market brands. And that's what the shopkeeper did in this case.
Mike should have read the listed ingredients on the baby food jar.I think both of them would have the same,except a few.
Answer:
DONT PRESS THAT LINK
Step-by-step explanation:
The denominator of the first term is a difference of squares, such that
4<em>a</em> ² - <em>b</em> ² = (2<em>a</em>)² - <em>b</em> ² = (2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)
So you can write the fractions as
(4<em>a</em> ² + <em>b</em> ²)/((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)) - (2<em>a</em> - <em>b</em>)/(2<em>a</em> + <em>b</em>)
Multiply through the second fraction by 2<em>a</em> - <em>b</em> to get a common denominator:
(4<em>a</em> ² + <em>b</em> ²)/((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>)) - (2<em>a</em> - <em>b</em>)²/((2<em>a</em> + <em>b</em>) (2<em>a</em> - <em>b</em>))
((4<em>a</em> ² + <em>b</em> ²) - (2<em>a</em> - <em>b</em>)²) / ((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>))
Expand the numerator:
(4<em>a</em> ² + <em>b</em> ²) - (2<em>a</em> - <em>b</em>)²
(4<em>a</em> ² + <em>b</em> ²) - (4<em>a</em> ² - 4<em>ab</em> + <em>b</em> ²)
4<em>ab</em>
<em />
So the original expression reduces to
4<em>ab</em> / ((2<em>a</em> - <em>b</em>) (2<em>a</em> + <em>b</em>))
or
4<em>ab</em> / (4<em>a</em> ² - <em>b</em> ²)
upon condensing the denominator again.