Given:
In △ABC is a right angle triangle.
AC is 6 units longer than side BC.
![Hypotenuse=2\sqrt{17}](https://tex.z-dn.net/?f=Hypotenuse%3D2%5Csqrt%7B17%7D)
To find:
The length of AC.
Solution:
Let the length of BC be x.
So, Length of AC = x+6
According to the Pythagoras theorem, in a right angle triangle
![Hypotenuse^2=Base^2+Perpendicualar^2](https://tex.z-dn.net/?f=Hypotenuse%5E2%3DBase%5E2%2BPerpendicualar%5E2)
△ABC is a right angle triangle and AC is hypotenuse, so
![(2\sqrt{17})^2=(x)^2+(x+6)^2](https://tex.z-dn.net/?f=%282%5Csqrt%7B17%7D%29%5E2%3D%28x%29%5E2%2B%28x%2B6%29%5E2)
![[\because (a+b)^2=a^2+2ab+b^2]](https://tex.z-dn.net/?f=%5B%5Cbecause%20%28a%2Bb%29%5E2%3Da%5E2%2B2ab%2Bb%5E2%5D)
Subtract 68 from both sides.
![0=2x^2+12x+36-68](https://tex.z-dn.net/?f=0%3D2x%5E2%2B12x%2B36-68)
![0=2x^2+12x-32](https://tex.z-dn.net/?f=0%3D2x%5E2%2B12x-32)
![0=2(x^2+6x-16)](https://tex.z-dn.net/?f=0%3D2%28x%5E2%2B6x-16%29)
Divide both sides by 2.
![x^2+6x-16=0](https://tex.z-dn.net/?f=x%5E2%2B6x-16%3D0)
Splitting the middle term, we get
![x^2+8x-2x-16=0](https://tex.z-dn.net/?f=x%5E2%2B8x-2x-16%3D0)
![x(x+8)-2(x+8)=0](https://tex.z-dn.net/?f=x%28x%2B8%29-2%28x%2B8%29%3D0)
![(x+8)(x-2)=0](https://tex.z-dn.net/?f=%28x%2B8%29%28x-2%29%3D0)
![x=-8,2](https://tex.z-dn.net/?f=x%3D-8%2C2)
Side cannot be negative, so x=2 only.
Now,
![AC=x+6](https://tex.z-dn.net/?f=AC%3Dx%2B6)
![AC=2+6](https://tex.z-dn.net/?f=AC%3D2%2B6)
![AC=8](https://tex.z-dn.net/?f=AC%3D8)
Therefore, the length of AC is 8 units.