Answer:
x = √47
General Formulas and Concepts:
<u>Pre-Algebra</u>
Order of Operations: BPEMDAS
- Brackets
- Parenthesis
- Exponents
- Multiplication
- Division
- Addition
- Subtraction
Equality Properties
<u>Trigonometry</u>
- [Right Triangles Only] Pythagorean Theorem: a² + b² = c²
Step-by-step explanation:
<u>Step 1: Define</u>
We have a right triangle. We can use PT to solve for the missing side length.
<u>Step 2: Identify Variables</u>
Leg <em>a</em> = 5
Leg <em>b </em>= <em>x</em>
Hypotenuse <em>c</em> = √72
<u>Step 3: Solve for </u><em><u>x</u></em>
- Substitute [PT]: 5² + x² = (√72)²
- Exponents: 25 + x² = 72
- Isolate <em>x</em> term: x² = 47
- Isolate <em>x</em>: x = √47
<span>C = total calories burned
r = rate of burning calories = 420 calories burned/hour
t = time in hours
C = 420 * t
</span>
12
2 multiplied by 6 is 12 and so 1 multiplied by something is 12
Hope this helps.
Answer:
no
Step-by-step explanation:
Answer:
Step-by-step explanation:
4) parallel because 118° is a supplement to 62° and the corresponding angles are both 118°
5) NOT parallel. The labeled angles sum to 120° and would sum to 180° for parallel lines.
6) NOT parallel. see pic.
If parallel, extending a line to intersect ℓ₁ makes an opposite internal angle which would also be 48°. The created triangle would have its third angle at 180 - 90 - 48 = 42° which is opposite a labeled 48° angle, which is false, so the lines cannot be parallel
7)
b = 78° as it corresponds with a labeled angle above it
a = 180 - 78 = 102° as angles along a line from a common vertex sum to 180
f = is an opposite angle to 180 - 78 - 44 = 58° as angles along a line from a common vertex sum to 180
e = 180 - 90 - 64 = 26° as angles along a line from a common vertex sum to 180
c = 58° as it corresponds with f
d = 180 - 58 = 122° as angles along a line from a common vertex sum to 180