<span>Two ways technology can affect the environment is by air pollution and toixc water</span>
Integers because it uses degrees
<span>B)
8 ft
6, 8, 10 are lengths of a Pythagorean triple
6^2 + 8^2 = 10^2</span><span>
</span>
Answer:
A person must get an IQ score of at least 138.885 to qualify.
Step-by-step explanation:
Problems of normally distributed samples are solved using the z-score formula.
In a set with mean
and standard deviation
, the zscore of a measure X is given by:

The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the pvalue, we get the probability that the value of the measure is greater than X.
In this problem, we have that:

(a). [7pts] What IQ score must a person get to qualify
Top 8%, so at least the 100-8 = 92th percentile.
Scores of X and higher, in which X is found when Z has a pvalue of 0.92. So X when Z = 1.405.




A person must get an IQ score of at least 138.885 to qualify.
Answer: B. The coordinates of the center are (-3,4), and the length of the radius is 10 units.
Step-by-step explanation:
The equation of a circle in the center-radius form is:
(1)
Where
are the coordinates of the center and
is the radius.
Now, we are given the equation of this circle as follows:
(2)
And we have to write it in the format of equation (1). So, let's begin by applying common factor 2 in the left side of the equation:
(3)
Rearranging the equation:
(4)
(5)
Now we have to complete the square in both parenthesis, in order to have a perfect square trinomial in the form of
:
<u>For the first parenthesis:</u>

We can rewrite this as:

Hence in this case
and
:

<u>For the second parenthesis:</u>

We can rewrite this as:

Hence in this case
and
:

Then, equation (5) is rewritten as follows:
(6)
<u>Note we are adding 9 and 16 in both sides of the equation in order to keep the equality.</u>
Rearranging:
(7)
At this point we have the circle equation in the center radius form 
Hence:


