1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nataly [62]
3 years ago
15

7 Find the AREA of the regular polygon. Il (2 points) 20 18.8 13.68

Mathematics
1 answer:
rodikova [14]3 years ago
3 0

Answer:

Answer is 18.8 please mark me Brainliest

Step-by-step explanation:

You might be interested in
Out of 30 students are surveyed 17 have a dog based on these results predict how many of the 300 students in the school have a d
zubka84 [21]
From\ proportion:\\
30\ students\ 17\ dogs\\
300\ students\ x\ dogs\\\\Cross\ multiplication\\
30x=300*17\\
30x=5100\ \ \ | divide\ by\ 30\\
x=170\\\\
There\ will\ be\ 170\ dogs\ for\ 300\ students.
5 0
3 years ago
Read 2 more answers
PLEASE HELP, WILL MARK BRAINLIEST!<br><br> 7/9x +2 = 5/6
harina [27]

Answer:

Exact Form:

x= -3/2

Decimal Form:

x= -1.5

Mixed Number Form

x= -1 1/2

Step-by-step explanation:

4 0
3 years ago
What is the probability of rolling an even number when rolling a 6-sided die?
lukranit [14]

Answer:

B.1/2

Step-by-step explanation:

Half of the numbers on a dice are even, so you have a 1 half probability of landing on an even number

7 0
3 years ago
Find the length of CB<br> .
slavikrds [6]

Answer:

CB = 7

Step-by-step explanation:

CB = CK

5x - 3 = 3x + 1

5x - 3x = 1 + 3

2x = 4

x = 4 / 2

x = 2

CB = 5x - 3

= 5 ( 2 ) - 3

= 10 - 3

CB = 7

3 0
3 years ago
Read 2 more answers
Using Laplace transforms, solve x" + 4x' + 6x = 1- e^t with the following initial conditions: x(0) = x'(0) = 1.
professor190 [17]

Answer:

The solution to the differential equation is

X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)

Step-by-step explanation:

Applying Laplace Transform will help us solve differential equations in Algebraic ways to find particular  solutions, thus after applying Laplace transform and evaluating at the initial conditions we need to solve and apply Inverse Laplace transform to find the final answer.

Applying Laplace Transform

We can start applying Laplace at the given ODE

x''(t)+4x'(t)+6x(t)=1-e^t

So we will get

s^2 X(s)-sx(0)-x'(0)+4(sX(s)-x(0))+6X(s)=\cfrac 1s -\cfrac1{s-1}

Applying initial conditions and solving for X(s).

If we apply the initial conditions we get

s^2 X(s)-s-1+4(sX(s)-1)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Simplifying

s^2 X(s)-s-1+4sX(s)-4+6X(s)=\cfrac 1s -\cfrac1{s-1}

s^2 X(s)-s-5+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}

Moving all terms that do not have X(s) to the other side

s^2 X(s)+4sX(s)+6X(s)=\cfrac 1s -\cfrac1{s-1}+s+5

Factoring X(s) and moving the rest to the other side.

X(s)(s^2 +4s+6)=\cfrac 1s -\cfrac1{s-1}+s+5

X(s)=\cfrac 1{s(s^2 +4s+6)} -\cfrac1{(s-1)(s^2 +4s+6)}+\cfrac {s+5}{s^2 +4s+6}

Partial fraction decomposition method.

In order to apply Inverse Laplace Transform, we need to separate the fractions into the simplest form, so we can apply partial fraction decomposition to the first 2 fractions. For the first one we have

\cfrac 1{s(s^2 +4s+6)}=\cfrac As + \cfrac {Bs+C}{s^2+4s+6}

So if we multiply both sides by the entire denominator we get

1=A(s^2+4s+6) +  (Bs+C)s

At this point we can find the value of A fast if we plug s = 0, so we get

1=A(6)+0

So the value of A is

A = \cfrac 16

We can replace that on the previous equation and multiply all terms by 6

1=\cfrac 16(s^2+4s+6) +  (Bs+C)s

6=s^2+4s+6 +  6Bs^2+6Cs

We can simplify a bit

-s^2-4s=  6Bs^2+6Cs

And by comparing coefficients we can tell the values of B and C

-1= 6B\\B=-1/6\\-4=6C\\C=-4/6

So the separated fraction will be

\cfrac 1{s(s^2 +4s+6)}=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6}

We can repeat the process for the second fraction.

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac A{s-1} + \cfrac {Bs+C}{s^2+4s+6}

Multiplying by the entire denominator give us

1=A(s^2+4s+6) + (Bs+C)(s-1)

We can plug the value of s = 1 to find A fast.

1=A(11) + 0

So we get

A = \cfrac1{11}

We can replace that on the previous equation and multiply all terms by 11

1=\cfrac 1{11}(s^2+4s+6) + (Bs+C)(s-1)

11=s^2+4s+6 + 11Bs^2+11Cs-11Bs-11C

Simplifying

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C

And by comparing coefficients we can tell the values of B and C.

-s^2-4s+5= 11Bs^2+11Cs-11Bs-11C\\-1=11B\\B=-\cfrac{1}{11}\\5=-11C\\C=-\cfrac{5}{11}

So the separated fraction will be

\cfrac1{(s-1)(s^2 +4s+6)}=\cfrac {1/11}{s-1} + \cfrac {-s/11-5/11}{s^2+4s+6}

So far replacing both expanded fractions on the solution

X(s)=\cfrac 1{6s} +\cfrac {-s/6-4/6}{s^2+4s+6} -\cfrac {1/11}{s-1} -\cfrac {-s/11-5/11}{s^2+4s+6}+\cfrac {s+5}{s^2 +4s+6}

We can combine the fractions with the same denominator

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {-s/6-4/6+s/11+5/11+s+5}{s^2 +4s+6}

Simplifying give us

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{s^2 +4s+6}

Completing the square

One last step before applying the Inverse Laplace transform is to factor the denominators using completing the square procedure for this case, so we will have

s^2+4s+6 = s^2 +4s+4-4+6

We are adding half of the middle term but squared, so the first 3 terms become the perfect  square, that is

=(s+2)^2+2

So we get

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61s/66+158/33}{(s+2)^2 +(\sqrt 2)^2}

Notice that the denominator has (s+2) inside a square we need to match that on the numerator so we can add and subtract 2

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2-2)/66+316 /66}{(s+2)^2 +(\sqrt 2)^2}\\X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66+194 /66}{(s+2)^2 +(\sqrt 2)^2}

Lastly we can split the fraction one more

X(s)=\cfrac 1{6s}  -\cfrac {1/11}{s-1}+\cfrac {61(s+2)/66}{(s+2)^2 +(\sqrt 2)^2}+\cfrac {194 /66}{(s+2)^2 +(\sqrt 2)^2}

Applying Inverse Laplace Transform.

Since all terms are ready we can apply Inverse Laplace transform directly to each term and we will get

\boxed{X(s)=\cfrac 1{6}  -\cfrac {1}{11}e^{t}+\cfrac {61}{66}e^{-2t}\cos(\sqrt 2t)+\cfrac {97}{66}\sqrt 2 e^{-2t}\sin(\sqrt 2t)}

6 0
4 years ago
Other questions:
  • Given a right triangle with AC=6 cm, AB=10 cm, find the length of BC. Show all your steps and calculations.
    7·1 answer
  • What is the lcd of the fractions 4/5x^2y, 8/3xy, 12/13xy^5
    14·1 answer
  • What are the next 3 numbers in the number sequence? 23, 31, 41, 53, …
    6·1 answer
  • Point Q(-2, 8) is translated using the rule (x + 1, y - 2).
    10·1 answer
  • in the 2010 new york city marathon 42429 people finished the race and received a medal before the race the medals had to be orde
    13·1 answer
  • Suppose an isotope has a half-life of 10 years. If you start with 50 grams of the isotope, how much of it will you have in 10 ye
    11·1 answer
  • Amy has a box containing 6 white, 4 red, and 8 black marbles. She picks a marble randomly. It is red. The second time, she picks
    8·1 answer
  • a cone and a cylinder have equal radii,r, and equal altitudes, h. If the slant height is l, then what is the ratio of the latera
    11·1 answer
  • 5 roommates share the cost of an apartment: rent,electricity, and gas. rent costs 1800 and gas costs 150 per month. each roommat
    13·1 answer
  • Grass the line with the given slope and y-intercept. slope = -4, y-intercept =-5
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!